How to deal with the connection between symbolic caculations and numerical caculations?
    5 views (last 30 days)
  
       Show older comments
    
First I need to do symbolic calculations to get the required equations. Then I use the equations for numerical calculations. 
For example, I obtain the equation Ge1=-1/((2*s + 1)/(s/20 + 1) + s^2*(s/10 + 1)) by symbolic calculations. 
Then  If Ge1_1=-1/((2*s + 1)/(s/20 + 1) + s^2*(s/10 + 1)), one can do numerical calculations. 
And I can't do numerical calculations when I want Ge1_1=Ge1. 
I don't know how to deal with the connection between symbolic caculations and numerical caculations. Is there a way to solve the problem? Thank you for reading and help.
Matlab Code:
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp];
Ge1=inv(P12_1)
s=tf('s')
w=logspace(-1,1,1000);
Ge1_1=Ge1;
% Ge1_1=-1/((2*s + 1)/(s/20 + 1) + s^2*(s/10 + 1));
[mag,pha,w]=bode(Ge1_1,w);
2 Comments
  Walter Roberson
      
      
 on 23 Mar 2022
				P12_1=[-1 / H - kp;];
Could you confirm that you want
P12_1=[(-1 / H) - kp;];
which would be
P12_1 = (-1/ H) - kp;
?? 
Or did you possibly mean
P12_1=[-1 / (H - kp)];
Accepted Answer
  Torsten
      
      
 on 21 Mar 2022
        "matlabFunction" converts symbolic expressions into function handles for numerical calculations.
help matlabFunction
1 Comment
More Answers (1)
  Paul
      
      
 on 23 Mar 2022
        Of course, the symbolic approach will work and might even have some benefits (IDK), but just want to make sure you're aware that it's not really necessary.
% symbolic approach
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp;];
Ge1=inv(P12_1);
[num,den] = numden(Ge1);
Ge1 = num/den
% control system toolbox functionality
s = tf('s');
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp;];
Ge1=inv(P12_1);
Ge1 = minreal(Ge1)  % normalizes numerator and denominator for comparison to symbolic result, not necessary otherwise
3 Comments
  Steven Lord
    
      
 on 23 Mar 2022
				If you wanted to go directly from the symbolic Ge1 to the tf object Ge1 you could extract the numerator and denominator from the symbolic Ge1 with numden as you did and then convert those symbolic polynomials into vectors of polynomial coefficients with sym2poly.
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp;];
Ge1=inv(P12_1);
[num,den] = numden(Ge1)
N = sym2poly(num)
D = sym2poly(den)
You can use N and D to create the tf object.
T = tf(N, D)
See Also
Categories
				Find more on Assumptions in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!







