Main Content

Supported Networks, Layers, and Classes

GPU Coder™ supports code generation for series and directed acyclic graph (DAG) neural networks. This page provides a list of supported deep learning networks, layers and classes.

Note that the code generator represents characters in an 8-bit ASCII codeset that the locale setting determines. Therefore, the use of non-ASCII characters in class names, layer names, layer description, or network names might result in errors. For more information, see Encoding of Characters in Code Generation.

Supported Pretrained Networks

You can train a neural network on either a CPU, a GPU, or multiple GPUs by using the Deep Learning Toolbox™ or use one of the pretrained networks listed in the table and generate CUDA® code.

These pretrained networks, available in Deep Learning Toolbox, are supported for code generation. You can use imagePretrainedNetwork (Deep Learning Toolbox) function to load these pretrained neural networks as dlnetwork (Deep Learning Toolbox) objects for code generation. Note that code generation does not support setting the name-value argument Weights of imagePretrainedNetwork function to "none". For example, use this code to load a pretrained GoogLeNet neural network.

net = imagePretrainedNetworks("googlenet")

imagePretrainedNetwork Model Name ArgumentCUDATensorRT and cuDNN

"alexnet"

"darknet19"

"darknet53"

"densenet201"

"efficientnetb0"

"googlenet"

"inceptionresnetv2"

"inceptionv3"

"mobilenetv2"

"nasnetlarge"

 

"nasnetmobile"

 

"resnet18"

"resnet50"

"resnet101"

"shufflenet"

 

"squeezenet"

"vgg16"

"vgg19"

"xception"

Additionally, you can use these functions to create neural networks for code generation.

Network NameCUDATensorRT and cuDNN

Caffe network

See importCaffeNetwork (Deep Learning Toolbox).

DeepLab v3+ network

deeplabv3plus (Computer Vision Toolbox)

 

Supported Layers

These layers are supported for code generation by GPU Coder for these target deep learning libraries.

Note

In the following tables, the information icon indicates that the network, layer, or class has limited code generation capabilities. You might see errors and unexpected behavior. For more information, see the Extended Capabilities section on the page for that network, layer, or class.

Input Layers

Layer NameCUDATensorRTcuDNN

imageInputLayer (Deep Learning Toolbox)

sequenceInputLayer (Deep Learning Toolbox)

featureInputLayer (Deep Learning Toolbox)

Convolution and Fully Connected Layers

Layer NameCUDATensorRT and cuDNN

convolution1dLayer (Deep Learning Toolbox)

 

convolution2dLayer (Deep Learning Toolbox)

fullyConnectedLayer (Deep Learning Toolbox)

groupedConvolution2dLayer (Deep Learning Toolbox)

 

transposedConv2dLayer (Deep Learning Toolbox)

 

Sequence Layers

Layer NameCUDATensorRT and cuDNN

sequenceInputLayer (Deep Learning Toolbox)

bilstmLayer (Deep Learning Toolbox)

flattenLayer (Deep Learning Toolbox)

gruLayer (Deep Learning Toolbox)

lstmLayer (Deep Learning Toolbox)

wordEmbeddingLayer (Text Analytics Toolbox)

Activation Layers

Layer NameCUDATensorRT and cuDNN

clippedReluLayer (Deep Learning Toolbox)

eluLayer (Deep Learning Toolbox)

leakyReluLayer (Deep Learning Toolbox)

preluLayer (Deep Learning Toolbox)

reluLayer (Deep Learning Toolbox)

gelu (Deep Learning Toolbox)

softplusLayer (Reinforcement Learning Toolbox)

swishLayer (Deep Learning Toolbox)

tanhLayer (Deep Learning Toolbox)

Utility Layers

Layer NameCUDATensorRT and cuDNN

batchNormalizationLayer (Deep Learning Toolbox)

crossChannelNormalizationLayer (Deep Learning Toolbox)

groupNormalizationLayer (Deep Learning Toolbox)

instanceNormalizationLayer (Deep Learning Toolbox)

layerNormalizationLayer (Deep Learning Toolbox)

crop2dLayer (Deep Learning Toolbox)

 

dropoutLayer (Deep Learning Toolbox)

scalingLayer (Reinforcement Learning Toolbox)

spatialDropoutLayer (Deep Learning Toolbox)

Pooling and Unpooling Layers

Layer NameCUDATensorRT and cuDNN
adaptiveAveragePooling2dLayer (Deep Learning Toolbox)

averagePooling1dLayer (Deep Learning Toolbox)

 

averagePooling2dLayer (Deep Learning Toolbox)

globalAveragePooling1dLayer (Deep Learning Toolbox)

 

globalAveragePooling2dLayer (Deep Learning Toolbox)

globalMaxPooling1dLayer (Deep Learning Toolbox)

 

globalMaxPooling2dLayer (Deep Learning Toolbox)

maxPooling1dLayer (Deep Learning Toolbox)

 

maxPooling2dLayer (Deep Learning Toolbox)

maxUnpooling2dLayer (Deep Learning Toolbox)

 

Combination Layers

Layer NameCUDATensorRT and cuDNN

additionLayer (Deep Learning Toolbox)

concatenationLayer (Deep Learning Toolbox)

depthConcatenationLayer (Deep Learning Toolbox)

Transformer Layers

Layer NameCUDATensorRT and cuDNN

AttentionLayer (Deep Learning Toolbox)

 

embeddingConcatenationLayer (Deep Learning Toolbox)

 

indexing1dLayer (Deep Learning Toolbox)

 

patchEmbeddingLayer (Computer Vision Toolbox)

 

PositionEmbeddingLayer (Deep Learning Toolbox)

 

selfAttentionLayer (Deep Learning Toolbox)

 

Object Detection Layers

Layer NameCUDATensorRT and cuDNN

depthToSpace2dLayer (Image Processing Toolbox)

spaceToDepthLayer (Image Processing Toolbox)

 

ssdMergeLayer (Computer Vision Toolbox)

yolov2TransformLayer (Computer Vision Toolbox)

Output Layers

Layer NameCUDATensorRT and cuDNN

classificationLayer (Deep Learning Toolbox)

regressionLayer (Deep Learning Toolbox)

sigmoidLayer (Deep Learning Toolbox)

softmaxLayer (Deep Learning Toolbox)

Custom Output Layer (Deep Learning Toolbox)

 More information

Custom Keras Layers

Layer NameCUDATensorRT and cuDNN

nnet.keras.layer.ClipLayer (Deep Learning Toolbox)

nnet.keras.layer.FlattenCStyleLayer (Deep Learning Toolbox)

nnet.keras.layer.GlobalAveragePooling2dLayer (Deep Learning Toolbox)

nnet.keras.layer.PreluLayer (Deep Learning Toolbox)

nnet.keras.layer.SigmoidLayer (Deep Learning Toolbox)

nnet.keras.layer.TanhLayer (Deep Learning Toolbox)

nnet.keras.layer.TimeDistributedFlattenCStyleLayer (Deep Learning Toolbox)

nnet.keras.layer.ZeroPadding2dLayer (Deep Learning Toolbox)

Custom ONNX Layers

Layer NameCUDATensorRT and cuDNN

nnet.onnx.layer.ClipLayer (Deep Learning Toolbox)

nnet.onnx.layer.ElementwiseAffineLayer (Deep Learning Toolbox)

nnet.onnx.layer.FlattenInto2dLayer (Deep Learning Toolbox)

nnet.onnx.layer.FlattenLayer (Deep Learning Toolbox)

nnet.onnx.layer.GlobalAveragePooling2dLayer (Deep Learning Toolbox)

nnet.onnx.layer.IdentityLayer (Deep Learning Toolbox)

nnet.onnx.layer.PreluLayer (Deep Learning Toolbox)

nnet.onnx.layer.SigmoidLayer (Deep Learning Toolbox)

nnet.onnx.layer.TanhLayer (Deep Learning Toolbox)

nnet.onnx.layer.VerifyBatchSizeLayer (Deep Learning Toolbox)

Custom Layers

Layer NameCUDATensorRT and cuDNN

Custom layers

 More information

 Code generation Limitations

Supported Classes

These classes are supported for code generation by GPU Coder for these target deep learning libraries.

NameCUDATensorRT and cuDNN

dlnetwork (Deep Learning Toolbox)

DAGNetwork (Deep Learning Toolbox)

pointPillarsObjectDetector (Lidar Toolbox)

SeriesNetwork (Deep Learning Toolbox)

ssdObjectDetector (Computer Vision Toolbox)

yolov2ObjectDetector (Computer Vision Toolbox)

yolov3ObjectDetector (Computer Vision Toolbox)

yolov4ObjectDetector (Computer Vision Toolbox)

yoloxObjectDetector (Computer Vision Toolbox)

See Also

Functions

Objects

Related Topics