imagePretrainedNetwork
Syntax
Description
The imagePretrainedNetwork
function loads a pretrained
neural network and optionally adapts the neural network architecture for transfer learning and
fine-tuning.
[
returns a pretrained SqueezeNet neural network and the network class names. This network is
trained on the ImageNet data set for 1000 classes.net
,classNames
] = imagePretrainedNetwork
[
returns the specified pretrained neural network and its class names.net
,classNames
] = imagePretrainedNetwork(name
)
[
specifies options using one or more name-value arguments, in addition to any combination of
input arguments from previous syntaxes. For example, net
,classNames
] = imagePretrainedNetwork(___,Name=Value
)Weights="none"
specifies to return the neural network uninitialized, without the pretrained weights.
Examples
Input Arguments
Output Arguments
Tips
To create and customize 2-D and 3-D ResNet neural network architectures, use the
resnetNetwork
andresnet3dNetwork
functions, respectively.
References
[1] ImageNet. http://www.image-net.org.
[2] Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model Size.” Preprint, submitted November 4, 2016. https://arxiv.org/abs/1602.07360.
[3] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going Deeper with Convolutions.” In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9. Boston, MA, USA: IEEE, 2015. https://doi.org/10.1109/CVPR.2015.7298594.
[4] Places. http://places2.csail.mit.edu/
[5] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. “Rethinking the Inception Architecture for Computer Vision.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–26. Las Vegas, NV, USA: IEEE, 2016. https://doi.org/10.1109/CVPR.2016.308.
[6] Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. “Densely Connected Convolutional Networks.” In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–69. Honolulu, HI: IEEE, 2017. https://doi.org/10.1109/CVPR.2017.243.
[7] Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. “MobileNetV2: Inverted Residuals and Linear Bottlenecks.” In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4510–20. Salt Lake City, UT: IEEE, 2018. https://doi.org/10.1109/CVPR.2018.00474.
[8] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for Image Recognition.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–78. Las Vegas, NV, USA: IEEE, 2016. https://doi.org/10.1109/CVPR.2016.90.
[9] Chollet, François. “Xception: Deep Learning with Depthwise Separable Convolutions.” Preprint, submitted in 2016. https://doi.org/10.48550/ARXIV.1610.02357.
[10] Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning.” Proceedings of the AAAI Conference on Artificial Intelligence 31, no. 1 (February 12, 2017). https://doi.org/10.1609/aaai.v31i1.11231.
[11] Zhang, Xiangyu, Xinyu Zhou, Mengxiao Lin, and Jian Sun. “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices.” Preprint, submitted July 4, 2017. http://arxiv.org/abs/1707.01083.
[12] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. “Learning Transferable Architectures for Scalable Image Recognition.” Preprint, submitted in 2017. https://doi.org/10.48550/ARXIV.1707.07012.
[13] Redmon, Joseph. “Darknet: Open Source Neural Networks in C.” https://pjreddie.com/darknet.
[14] Tan, Mingxing, and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.” Preprint, submitted in 2019. https://doi.org/10.48550/ARXIV.1905.11946.
[15] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks." Communications of the ACM 60, no. 6 (May 24, 2017): 84–90. https://doi.org/10.1145/3065386.
[16] Simonyan, Karen, and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition.” Preprint, submitted in 2014. https://doi.org/10.48550/ARXIV.1409.1556.
Extended Capabilities
Version History
Introduced in R2024a
See Also
trainnet
| trainingOptions
| dlnetwork
| testnet
| minibatchpredict
| scores2label
| predict
| analyzeNetwork
| Deep Network Designer | resnetNetwork
| resnet3dNetwork