Array indices must be positive integers or logical values.

Azhahra Vindy Ariesta on 20 Jul 2022

clear
clc
%----------Deklarasi Data Aktual atau Data Mentah (x^(0))----------
%----------Berdasarkan Urutan Periode Waktunya----------
X_1 = [85983, 70017, 42320, 26565, 21439, 113409, 271185, 35930, 7182, 3775, 2407, 1350, 48058, 261484, 62897, 9998, 2982];
X_2 = [408, 454, 941, 17162, 35687, 19932, 61510, 81608, 122599, 199153, 156101, 120015, 473173, 528996, 296969, 191202, 185226];
X_3 = [124171, 190032, 219189, 152435, 130347, 191144, 133795, 53560, 31457, 26162, 15893, 20052, 19478, 48404, 9502, 3737, 2332];
X_4 = [70409, 207282, 1494766, 1433620, 1110495, 2224241, 2359721, 2913705, 2800503, 912552, 600338, 297624, 232018, 94727, 1963767, 957424, 189150];
X_5 = [204975, 190683, 122735, 60850, 46974, 33007, 65187, 79223, 53214, 48594, 26030, 29108, 38010, 54320, 32069, 24323, 27081];
X_6 = [67018, 38201, 19335, 11657, 12855, 6542, 6611, 4101, 2953, 2723, 1313, 1393, 1866, 2354, 2157, 1740, 1231];
X_7 = [190988, 182134, 120311, 60621, 44094, 31392, 53312, 71792, 50007, 44888, 24092, 27284, 36540, 52766, 30289, 23357, 26715];
X_8 = [72365, 46900, 21759, 11886, 15735, 8157, 18336, 11826, 6160, 5761, 3251, 3537, 4068, 3788, 3937, 2706, 1797];
n = length(X_1); % panjang data
%----------Plotting Data Awal Covid-19----------
figure('Name','Data Awal');
sbx = 1:n;
plot(sbx,X_1,'k-o');
%hold on
%plot(sbx, X_2, '-*', sbx, X_3, '-*', sbx, X_4, '-*', sbx, X_5, '-*', sbx, X_6, '-*', sbx, X_7, '-*', sbx, X_8, '-*')
%hold off
title('Data Awal Penjangkitan Covid-19 ');
%legend('Kasus Positif', 'Pelaku Perjalanan', 'Pelaku Kontak Erat', 'Realisasi Vaksinasi Keseluruhan', 'Perilaku Memakai Masker', 'Perilaku TIDAK Memakai Masker', 'Perilaku Menjaga Jarak dan Menghindari Kerumunan', 'Perilaku TIDAK Menjaga Jarak dan Menghindari Kerumunan');
ylabel('Jumlah (Data)');
xlabel('Periode Waktu (k)');
grid on;
grid minor;
%----------Nilai Akumulasi AGO----------
Ago_1 = cumsum(X_1);
Ago_2 = cumsum(X_2);
Ago_3 = cumsum(X_3);
Ago_4 = cumsum(X_4);
Ago_5 = cumsum(X_5);
Ago_6 = cumsum(X_6);
Ago_7 = cumsum(X_7);
Ago_8 = cumsum(X_8);
%----------Nilai Pembangkit Rata-rata dari Dua Data yang Berdekatan----------
for k = 2:n
Z(k) = 0.5*(Ago_1(k) + Ago_1(k-1)); %Z(k) generates a sequence for the immediate mean of xi(1)
end
%----------Mencari Nilai Parameter a dan b----------
% 1) The constant (-a) is known as the system's development coefficient
% 2) b(i)x(i)(k) the driving term
% 3) b(i) the driving coefficient
% 4) a=[a,b(i),b(2)] the sequence of parameters.
syms a b;
c = [a,b]';% Constitutes a matrix
Yn_1 = X_1; %Yn is a constant term vector
Yn_1(1)= [];
Z(1) = [];
Ago_2(1) = [];Ago_3(1) = [];Ago_4(1) = [];Ago_5(1) = [];Ago_6(1) = [];Ago_7(1) = [];Ago_8(1) = [];
B = [-Z;Ago_2;Ago_3;Ago_4;Ago_5;Ago_6;Ago_7;Ago_8]';
c = inv(B'*B)*(B'.*Yn_1);
c = c';
a = c(:,1);% parameter a
b2 = c(2); %parameter b
b3 = c(3);
b4 = c(4);
b5 = c(5);
b6 = c(6);
b7 = c(7);
b8 = c(8);
jml_b2Ago2 = b2*Ago_2;
jml_b3Ago3 = b3*Ago_3;
jml_b4Ago4 = b4*Ago_4;
jml_b5Ago5 = b5*Ago_5;
jml_b6Ago6 = b6*Ago_6;
jml_b7Ago7 = b7*Ago_7;
jml_b8Ago8 = b8*Ago_8;
total_biAgoi = jml_b2Ago2 + jml_b3Ago3 + jml_b4Ago4 + jml_b5Ago5 + jml_b6Ago6 + jml_b7Ago7 + jml_b8Ago8;
%----------Proses Whitening----------
F = [];
F(1) = X_1(1);
for k = 1:n
%F(k+1) = exp(-a.*k)*(X_1(1)- k.*total_biAgoi(0) + integral(total_biAgoi(k))*exp^(a.*k));% Find the GM(1,1) model formula
end

Tags

No tags entered yet.