Solving with ode45 with a solution dependant variable in the ode
1 view (last 30 days)
Show older comments
Hi,
Let's say I want to solve :
with , with all following the same ode as y(z).
I can theoretically solve each ode with RK4 at step z+dz and then calculate N(z+dz). But how do I do it using the already implemented RK4 function implemented in Matlab? Would something like this work or is there a way better solution?
while(z<zLim)%%This is just an idea of the algorithm I would use
zspan=[0 dz];%Solving the ODE for a very small zspan
if(z~=0)
y0=y(length(y));
else
y0=0;
end
[z,y] = ode45(@(z,y) N*y, zspan, y0);
%Calculate c(z),g(z),....
%Calculate N at step dz
z=z+dz;
end
Thanks
0 Comments
Accepted Answer
More Answers (1)
Aquatris
on 7 Aug 2024
Edited: Aquatris
on 7 Aug 2024
No, you should not do it that way. Instead you should create your function properly in a way that represents the equations. It will be easier to manipulate things later on.
[z,y] = ode45(@myfun, zspan, y0);
function dx = myfun(z,y)
% x = [y(z) N(z) g(z) c(z)]'
persistent z_prev
if isempty(z_prev)
z_prev = 0; % assuming zspan starts at 0
end
dz = z-z_prev;
dx = [x(1)*x(2); % dy = y(z)*N(z)
(x(1)+x(3)+x(4)-x(2))/dt; % dN = (y(z)+c(z)+g(z)-N)/dz so that N(z+dz) = N(z)+(y(z)+c(z)+g(z)-N(z))/dz*dz = y(z)+c(z)+g(z)
...% dc -> formulate similar to dN
...% dg -> formulate similar to dN]
end
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!