rescale function does not work correctly
10 views (last 30 days)
Show older comments
In my computer, the code
load('B');
min(rescale(B(:)),[],'all')
get answer 1.1102e-16, not 0, does anyone have the same problem?
0 Comments
Answers (1)
Jack
on 29 Mar 2023
Hi,
Yes, it is a common issue in numerical computing due to the limitations of floating-point arithmetic. In floating-point arithmetic, numbers are represented with a finite number of bits, which can lead to rounding errors and inaccuracies in calculations.
In your case, the value of 1.1102e-16 is very close to zero, but it is not exactly zero. When you use the rescale function, it scales the elements of B so that the minimum value becomes 0 and the maximum value becomes 1. However, due to rounding errors in the computation, the minimum value of B may not be exactly zero, but rather a very small number close to zero.
When you apply the min function to the rescaled B, it returns the smallest value in the matrix, which is very close to zero but not exactly zero. The 'all' option specifies that the minimum value should be computed over all elements of the matrix.
To avoid this issue, you can use a tolerance value when comparing values to zero. For example, you could modify your code to check if the minimum value is within a certain tolerance of zero, like this:
load('B');
tolerance = 1e-10; % set a tolerance value
min_val = min(rescale(B(:)));
if abs(min_val) < tolerance
disp('Minimum value is approximately zero');
else
disp('Minimum value is not approximately zero');
end
This code checks if the absolute value of the minimum value is less than the tolerance value. If it is, it displays a message indicating that the minimum value is approximately zero. Otherwise, it indicates that the minimum value is not approximately zero.
9 Comments
DGM
on 30 Mar 2023
Edited: DGM
on 30 Mar 2023
I think that explaining relevant non-obvious internal operations is precisely what an "algorithms" section in the documentation is supposed to clarify, so I think I agree about that.
I fhought about trying to rewrite the code to share, but I'm not sure how much I can really "rewrite" it in such a way that it's not just obfuscated copypasta -- especially since I'd rather just keep the comments verbatim.
EDIT: I'm just going to paste my little excerpt that I was poking at. It's still largely the original code, though I rearranged and renamed some things for my own viewing comfort. I threw in a few comments and removed some complications that aren't relevant to this specific usage. If someone objects that it's still too infringement-like, then I invite them to offer a better clarification.
load('B');
% we don't actually need the entire array
% we only need the extrema to observe the effect
B = [min(B(:)) max(B(:))]
% assuming default input limits
inlo = double(min(B(:)));
inhi = double(max(B(:)));
% assuming default output limits
outlo = 0;
outhi = 1;
% clamp input to input range
B = min(max(B,inlo),inhi);
% Regularize constant values to return lowerbound of output range
% i'm guessing this is to avoid dividing by zero
constReg = (inlo == inhi);
% Determine where to center the problem based on the input range
sigma = min(max(0,inlo),inhi); % zero if inrange crosses zero; otherwise input limit closest to zero
inlo = inlo - sigma; % shift the input limits so that zero is on or between them
inhi = inhi - sigma;
% Scale to prevent overflow/underflow
% i'll leave this to you to unpack
e1 = nextpow2(max(abs(inlo), abs(inhi)));
e2 = nextpow2(max(abs(outlo),abs(outhi)));
r1 = 2.^(e1-1);
r2 = 2.^(e2-1);
r3 = 2.^(fix((e1+e2)/2)-1);
z = ( (inhi./r1).*(outlo./r3) ...
- (inlo./r1).*(outhi./r3) ...
+ (outlo./r3).*(constReg./r1) ) ...
./ ((inhi./r1) - (inlo./r1) + (constReg./r1));
slope = ((outhi./r2) - (outlo./r2)) ...
./ ((inhi./r3) - (inlo./r3) + (constReg./r3));
% assuming input is float
R = r2.*((slope./r3).*(B - sigma) + (r3./r2).*z);
% clamp output to output range
R = min(max(R,outlo),outhi);
fprintf('%.20f\n',R)
See Also
Categories
Find more on Logical in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!