IncrementalClassificationNaiveBayes Predict
Classify observations using incremental naive Bayes classification model
Since R2025a

Libraries:
Statistics and Machine Learning Toolbox /
Incremental Learning /
Classification /
NaiveBayes
Description
The IncrementalClassificationNaiveBayes Predict block classifies observations using a trained naive Bayes classification model returned as the output of an IncrementalClassificationNaiveBayes Fit block.
Import an initial naive Bayes classification model object into the block by specifying the name of a workspace variable that contains the object. The input port mdl receives a bus signal that represents an incremental learning model fit to streaming data. The input port x receives a chunk of predictor data (observations), and the output port label returns predicted class labels for the chunk. The optional output port score returns predicted class scores or posterior probabilities. The optional output port cost returns the expected classification costs. The optional output port CanPredict returns the prediction status of the trained model.
Examples
This example shows how to use the IncrementalClassificationNaiveBayes Fit and IncrementalClassificationNaiveBayes Predict blocks for incremental learning and multiclass classification in Simulink®.
Load the human activity data set and randomly shuffle the data. For details on the data set, enter Description
at the command line. Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing.
load humanactivity n = numel(actid); rng(0,"twister") % For reproducibility idx = randsample(n,n); X = feat(idx,:); Y = actid(idx);
Create an initial incremental classification naive Bayes model. The model is configured with 60 predictors, class names, and a metrics warmup period of 200 observations.
nbMdl = incrementalClassificationNaiveBayes(NumPredictors=60,ClassNames=[1,2,3,4,5], MetricsWarmupPeriod=200);
To demonstrate streaming, divide the training data into chunks of 50 observations. For each chunk, select a single observation as a test set to import into the IncrementalClassificationNaiveBayes Predict block.
numObsPerChunk = 50; nchunk = floor(n/numObsPerChunk); numPredictors = size(feat,2); Xin = zeros(numObsPerChunk,numPredictors,nchunk); Yin = zeros(numObsPerChunk,nchunk); Xtest = zeros(1,numPredictors,nchunk); for j = 1:nchunk ibegin = min(n,numObsPerChunk*(j-1) + 1); iend = min(n,numObsPerChunk*j); idx = ibegin:iend; Xin(:,:,j) = X(idx,:); Yin(:,j) = Y(idx); Xtest(1,:,j) = X(idx(1),:); end
Convert the training and test set chunks into time series objects.
t = 0:size(Xin,3)-1; Xtrain_ts = timeseries(Xin,t,InterpretSingleRowDataAs3D=true); Ytrain_ts = timeseries(Yin',t,InterpretSingleRowDataAs3D=true); Xtest_ts = timeseries(Xtest,t,InterpretSingleRowDataAs3D=true);
This example provides a Simulink model, slexIncClassNBPredictExample.slx
, shown in the figure below. The model is configured to use incrementalClassificationNaiveBayes
as the initial model for the fit block.
slName = "slexIncClassNBPredictExample";
open_system(slName);
Simulate the model and export the simulation outputs to the workspace. You can use the Simulation Data Inspector (Simulink) to view the logged data of an Outport block.
simOut = sim(slName,"StopTime",num2str(numel(t)-1));
% Extract labels label_sig = simOut.yout.getElement(1); label_sl = squeeze(label_sig.Values.Data); % Extract scores values scores_sig = simOut.yout.getElement(2); scores_sl = squeeze(scores_sig.Values.Data); % Extract cost values cost_sig = simOut.yout.getElement(3); cost_sl = squeeze(cost_sig.Values.Data);
At each iteration, the IncrementalClassificationNaiveBayes Fit block fits a chunk of observations (predictor data) and outputs the updated incremental learning model parameters as a bus signal. The IncrementalClassificationNaiveBayes Predict block calculates the predicted label for each test set observation.
To see how the model parameters and response values evolve during training, plot them on separate tiles.
figure tiledlayout(3,1); nexttile plot(scores_sl(1,:),".") ylabel("Score") xlabel("Iteration") xlim([0 nchunk]) nexttile plot(label_sl,".") ylabel("Label") xlabel("Iteration") xlim([0 nchunk]) nexttile plot(cost_sl(1,:),".") ylabel("Cost") xlabel("Iteration") xlim([0 nchunk])
Ports
Input
Incremental learning model (incrementalClassificationNaiveBayes
) fit to streaming data, specified as a
bus signal (see Composite Signals
(Simulink)).
Chunk of predictor data, specified as a numeric matrix.
The block supports only numeric input predictor data. If your input data includes
categorical data, you must prepare an encoded version of the categorical data. Use
dummyvar
to convert each categorical
variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see Dummy Variables.
Data Types: single
| double
| half
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
| fixed point
Output
Chunk of predicted class labels, returned as a column vector. The predicted class
is the class that minimizes the expected classification cost. For more details, see
the More About section of the
predict
object
function.
Data Types: single
| double
| half
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
| fixed point
| enumerated
Predicted class scores or posterior probabilities, returned as a
n-by-numel(mdl.ClassNames)
matrix, where
n is the number of observations in x. The
classification score score(j,k)
represents the posterior
probability that the observation j in x
belongs to class k.
To check the order of the classes, use the ClassNames
property of the naive Bayes model specified by Select initial
trained machine learning model.
Dependencies
To enable this port, select the check box for Add output port for predicted class scores on the Main tab of the Block Parameters dialog box.
Data Types: single
| double
| half
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
| fixed point
Expected misclassification costs, returned as a
n-by-numel(mdl.ClassNames)
matrix, where
n is the number of observations in x. The
classification cost Cost(j,k)
represents the cost of the
observation in row j of x being classified
into class k.
To check the order of the classes, use the ClassNames
property of the naive Bayes model specified by Select initial
trained machine learning model.
Dependencies
To enable this port, select the check box for Add output port for expected classification cost on the Main tab of the Block Parameters dialog box.
Data Types: single
| double
| half
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
| fixed point
Model status for prediction, returned as numeric or logical 0
(false
) or 1
(true
).
Note
If you specify a model that is not trained, then the
IncrementalClassificationNaiveBayes Predict cannot predict the
response and the model status is 0
(false
).
Dependencies
To enable this port, select the check box for Add output port for status of trained machine learning model on the Main tab of the Block Parameters dialog box.
Parameters
To edit block parameters interactively, use the Property Inspector. From the Simulink® Toolstrip, on the Simulation tab, in the Prepare gallery, select Property Inspector.
Main
Specify the name of a workspace variable that contains the configured incrementalClassificationNaiveBayes
model object.
The following restrictions apply:
The predictor data cannot include categorical predictors (
logical
,categorical
,char
,string
, orcell
). If you supply training data in a table, the predictors must be numeric (double
orsingle
). To include categorical predictors in a model, preprocess them by usingdummyvar
before fitting the model.The
ScoreTransform
property of the initial model cannot be"invlogit"
or an anonymous function.The value of the
DistributionNames
name-value argument cannot be"mn"
or"mvmn"
.
Programmatic Use
Block Parameter:
InitialLearner |
Type: character vector or string |
Values:
incrementalClassificationNaiveBayes object name |
Default:
"nbMdl" |
Select the check box to include the output port score for predicted class scores in the IncrementalClassificationNaiveBayes Predict block.
Programmatic Use
Block Parameter:
ShowOutputScore |
Type: character vector or string |
Values:
"off" | "on" |
Default:
"off" |
Select the check box to include the output port cost in the IncrementalClassificationNaiveBayes Predict block.
Programmatic Use
Block Parameter:
ShowOutputCost |
Type: character vector or string |
Values:
"off" | "on" |
Default:
"off" |
Select the check box to include the output port CanPredict in
the IncrementalClassificationNaiveBayes Predict block. This check box
does not appear if the workspace already contains an incremental Naive Bayes
classification model named nbMdl
capable of prediction when you
created the IncrementalClassificationNaiveBayes Predict block.
Alternatively, you can specify to include the output port
CanPredict by selecting
theIncrementalClassificationNaiveBayes Predict block in the
Simulink workspace and entering
set_param(gcb,ShowOutputCanPredict="on")
at the MATLAB command
line.
Programmatic Use
Block Parameter:
ShowOutputCanPredict |
Type: character vector or string |
Values:
"off" | "on" |
Default:
"off" |
Specify the discrete interval between sample time hits or specify another type of sample
time, such as continuous (0
) or inherited (–1
). For more
options, see Types of Sample Time (Simulink).
By default, the IncrementalClassificationNaiveBayes Predict block inherits sample time based on the context of the block within the model.
Programmatic Use
Block Parameter:
SystemSampleTime |
Type: string scalar or character vector |
Values: scalar |
Default:
"–1" |
Data Types
Fixed-Point Operational Parameters
Specify the rounding mode for fixed-point operations. For more information, see Rounding Modes (Fixed-Point Designer).
Block parameters always round to the nearest representable value. To control the rounding of a block parameter, enter an expression into the mask field using a MATLAB® rounding function.
Programmatic Use
Block Parameter:
RndMeth |
Type: character vector |
Values:
"Ceiling" | "Convergent" | "Floor" | "Nearest" | "Round" | "Simplest" |
"Zero" |
Default:
"Floor" |
Specify whether overflows saturate or wrap.
Action | Rationale | Impact on Overflows | Example |
---|---|---|---|
Select this check box
( | Your model has possible overflow, and you want explicit saturation protection in the generated code. | Overflows saturate to either the minimum or maximum value that the data type can represent. | The maximum value that the |
Clear this check box
( | You want to optimize the efficiency of your generated code. You want to avoid overspecifying how a block handles out-of-range signals. For more information, see Troubleshoot Signal Range Errors (Simulink). | Overflows wrap to the appropriate value that the data type can represent. | The maximum value that the |
Programmatic Use
Block Parameter:
SaturateOnIntegerOverflow |
Type: character vector |
Values:
"off" | "on" |
Default:
"off" |
Select this parameter to prevent the fixed-point tools from overriding the data type you specify for the block. For more information, see Use Lock Output Data Type Setting (Fixed-Point Designer).
Programmatic Use
Block Parameter:
LockScale |
Type: character vector |
Values:
"off" | "on" |
Default:
"off" |
Data Type
Specify the data type for the label output. The type can be inherited, specified as an enumerated data type, or expressed as a data type object such as Simulink.NumericType
.
The supported data types depend on the labels used in the model specified by Select initial trained machine learning model.
If the model uses numeric or logical labels, the supported data types are
Inherit: Inherit via back propagation
(default),double
,single
,half
,int8
,uint8
,int16
,uint16
,int32
,uint32
,int64
,uint64
,boolean
, fixed point, and a data type object.If the model uses nonnumeric labels, the supported data types are
Inherit: auto
(default),Enum: <class name>
, and a data type object.
When you select an inherited option, the software behaves as follows:
Inherit: Inherit via back propagation
(default for numeric and logical labels) — Simulink automatically determines the Label data type of the block during data type propagation (see Data Type Propagation (Simulink)). In this case, the block uses the data type of a downstream block or signal object.Inherit: auto
(default for nonnumeric labels) — The block uses an autodefined enumerated data type variable. For example, suppose the workspace variable name specified by Select initial trained machine learning model ismyMdl
, and the class labels areclass 1
andclass 2
. Then, the corresponding label values aremyMdl_enumLabels.class_1
andmyMdl_enumLabels.class_2
. The block converts the class labels to valid MATLAB identifiers by using thematlab.lang.makeValidName
function.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter: LabelDataTypeStr |
Type: character vector or string |
Values: "Inherit: Inherit via back propagation" | "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "Enum: <class name>" | "<data type expression>" |
Default: "Inherit: Inherit via back propagation" (for numeric and logical labels) | "Inherit: auto" (for nonnumeric labels) |
Specify the lower value of the label output range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Label data type Minimum parameter does not saturate or clip the actual label output signal. To do so, use the Saturation (Simulink) block instead.
Dependencies
You can specify this parameter only if the model specified by Select initial trained machine learning model uses numeric labels.
Programmatic Use
Block Parameter: LabelOutMin |
Type: character vector |
Values: "[]" | scalar |
Default: "[]" |
Specify the upper value of the label output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Label data type Maximum parameter does not saturate or clip the actual label output signal. To do so, use the Saturation (Simulink) block instead.
Dependencies
You can specify this parameter only if the model specified by Select initial trained machine learning model uses numeric labels.
Programmatic Use
Block Parameter: LabelOutMax |
Type: character vector |
Values: "[]" | scalar |
Default: "[]" |
Specify the data type for the score output. The type can be
inherited, specified directly, or expressed as a data type object such as
Simulink.NumericType
.
When you select Inherit: auto
, the block uses a rule that
inherits a data
type.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant
button to display the Data Type Assistant,
which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter:
ScoreDataTypeStr |
Type: character vector or string |
Values: "Inherit: auto"
| "double" | "single" |
"half" | "int8" |
"uint8" | "int16" |
"uint16" | "int32" |
"uint32" | "int64" |
"uint64" | "boolean" |
"fixdt(1,16,0)" | "fixdt(1,16,2^0,0)"
| "<data type expression>" |
Default: "Inherit:
auto" |
Specify the lower value of the score output range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Score data type Minimum parameter does not saturate or clip the actual score output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
ScoreOutMin |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Specify the upper value of the score output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Score data type Maximum parameter does not saturate or clip the actual score output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
ScoreOutMax |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Specify the data type for the internal untransformed scores. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
When you select Inherit: auto
, the block uses a rule that inherits a data type.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Dependencies
You can specify this parameter only if the model specified by Select initial trained machine learning model uses a score transformation other than "none"
(default, same as "identity"
).
If the model uses no score transformations (
"none"
or"identity"
), then you can specify the score data type by using Score data type.If the model uses a score transformation other than
"none"
or"identity"
, then you can specify the data type of untransformed raw scores by using this parameter. To specify the data type of transformed scores, use Score data type.
You can change the score transformation option by specifying the ScoreTransform
name-value argument during training, or by modifying the ScoreTransform
property after training.
Programmatic Use
Block Parameter: RawScoreDataTypeStr |
Type: character vector |
Values: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>" |
Default: "Inherit: auto" |
Specify the lower value of the untransformed score range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Raw score data type Minimum parameter does not saturate or clip the actual untransformed score signal.
Programmatic Use
Block Parameter:
RawScoreOutMin |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Specify the upper value of the untransformed score range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Raw score data type Maximum parameter does not saturate or clip the actual untransformed score signal.
Programmatic Use
Block Parameter:
RawScoreOutMax |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Specify the data type for the cost output. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
When you select Inherit: auto
, the block uses a rule that inherits a data type.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant
button to display the Data Type Assistant,
which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter: CostDataTypeStr |
Type: character vector or string |
Values: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>" |
Default: "Inherit: auto" |
Specify the lower value of the cost output range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Estimated cost data type Minimum parameter does not saturate or clip the actual cost signal. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: CostOutMin |
Type: character vector |
Values: "[]" | scalar |
Default: "[]" |
Specify the upper value of the cost output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Estimated cost data type Maximum parameter does not saturate or clip the actual cost signal. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: CostOutMax |
Type: character vector |
Values: "[]" | scalar |
Default: "[]" |
Additional Data Types
Specify the data type for the likelihood output. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
When you select Inherit: auto
, the block uses a rule that inherits a data type.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant
button to display the Data Type Assistant,
which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter: LikelihoodDataTypeStr |
Type: character vector |
Values: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>" |
Default: "Inherit: auto" |
Specify the lower value of the likelihood output range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Likelihood data type Minimum parameter does not saturate or clip the actual likelihood values. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: LikelihoodOutMin |
Type: character vector |
Values: "[]" | scalar |
Default: "[]" |
Specify the upper value of the likelihood output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Likelihood data type Maximum parameter does not saturate or clip the actual likelihood values. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: LikelihoodOutMax |
Type: character vector |
Values: "[]" | scalar |
Default: "[]" |
Specify the data type for posterior probabilities. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
When you select Inherit: auto
, the block uses a rule that inherits a data type.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant
button to display the Data Type Assistant,
which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter: PosteriorDataTypeStr |
Type: character vector |
Values: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>" |
Default: "Inherit: auto" |
Specify the lower value of the posterior probability output range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Posterior data type Minimum parameter does not saturate or clip the actual posterior probabilities. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: PosteriorOutMin |
Type: character vector |
Values: "[]" | scalar |
Default: "[]" |
Specify the upper value of the posterior probability output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Posterior data type Maximum parameter does not saturate or clip the actual posterior probabilities. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: PosteriorOutMax |
Type: character vector |
Values: "[]" | scalar |
Default: "[]" |
Block Characteristics
Data Types |
|
Direct Feedthrough |
|
Multidimensional Signals |
|
Variable-Size Signals |
|
Zero-Crossing Detection |
|
More About
The data types of internal model parameters are
synchronized to the data type of the enabled score
output port. If the
score
output port is not enabled, the model parameter data types
are synchronized to other internal data types.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.
Version History
Introduced in R2025a
See Also
Blocks
Objects
Functions
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)