Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Create generalized linear regression model

`mdl = fitglm(tbl)`

`mdl = fitglm(X,y)`

`mdl = fitglm(___,modelspec)`

`mdl = fitglm(___,Name,Value)`

returns
a generalized linear model with additional options specified by one
or more `mdl`

= fitglm(___,`Name,Value`

)`Name,Value`

pair arguments.

For example, you can specify which variables are categorical, the distribution of the response variable, and the link function to use.

The generalized linear model

`mdl`

is a standard linear model unless you specify otherwise with the`Distribution`

name-value pair.For methods such as

`plotResiduals`

or`devianceTest`

, or properties of the`GeneralizedLinearModel`

object, see`GeneralizedLinearModel`

.After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB

^{®}Coder™. For details, see Introduction to Code Generation.

`fitglm`

treats a categorical predictor as follows:A model with a categorical predictor that has

*L*levels (categories) includes*L*– 1 indicator variables. The model uses the first category as a reference level, so it does not include the indicator variable for the reference level. If the data type of the categorical predictor is`categorical`

, then you can check the order of categories by using`categories`

and reorder the categories by using`reordercats`

to customize the reference level.`fitglm`

treats the group of*L*– 1 indicator variables as a single variable. If you want to treat the indicator variables as distinct predictor variables, create indicator variables manually by using`dummyvar`

. Then use the indicator variables, except the one corresponding to the reference level of the categorical variable, when you fit a model. For the categorical predictor`X`

, if you specify all columns of`dummyvar(X)`

and an intercept term as predictors, then the design matrix becomes rank deficient.Interaction terms between a continuous predictor and a categorical predictor with

*L*levels consist of the element-wise product of the*L*– 1 indicator variables with the continuous predictor.Interaction terms between two categorical predictors with

*L*and*M*levels consist of the (*L*– 1)*(*M*– 1) indicator variables to include all possible combinations of the two categorical predictor levels.You cannot specify higher-order terms for a categorical predictor because the square of an indicator is equal to itself.

`fitglm`

considers`NaN`

,`''`

(empty character vector),`""`

(empty string),`<missing>`

, and`<undefined>`

values in`tbl`

,`X`

, and`Y`

to be missing values.`fitglm`

does not use observations with missing values in the fit. The`ObservationInfo`

property of a fitted model indicates whether or not`fitglm`

uses each observation in the fit.

Use

`stepwiseglm`

to select a model specification automatically. Use`step`

,`addTerms`

, or`removeTerms`

to adjust a fitted model.

[1] Collett, D. *Modeling Binary
Data*. New York: Chapman & Hall, 2002.

[2] Dobson, A. J. *An Introduction
to Generalized Linear Models*. New York: Chapman &
Hall, 1990.

[3] McCullagh, P., and J. A. Nelder. *Generalized
Linear Models*. New York: Chapman & Hall, 1990.