Main Content

horn

Create horn antenna

Description

The horn object is a pyramidal horn antenna with a standard-gain, 15 dBi. The default horn antenna operates in the X-Ku band, which ranges from 10 GHz to 15 GHz. By default, the horn antenna feed is a WR-75 rectangular waveguide with an operating frequency at 7.87 GHz.

For a given flare angles of the horn and dimensions of the waveguide, use the hornangle2size utility function to calculate the equivalent flare width and flare height of the horn.

Creation

Description

example

hr = horn creates a standard-gain pyramidal horn antenna.

hr = horn(Name,Value) creates a horn antenna with additional properties specified by one or more name-value pair arguments. Name is the property name and Value is the corresponding value. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default values.

Properties

expand all

Flare length of horn, specified as a scalar in meters.

Example: 'FlareLength',0.35

Data Types: double

Flare width of horn, specified as a scalar in meters.

Example: 'FlareWidth',0.2

Data Types: double

Flare height of horn, specified as a scalar in meters.

Example: 'FlareHeight',0.15

Data Types: double

Rectangular waveguide length, specified as a scalar in meters.

Example: 'Length',0.09

Data Types: double

Rectangular waveguide width, specified as a scalar in meters.

Example: 'Width',0.05

Data Types: double

Rectangular waveguide height, specified as a scalar in meters.

Example: 'Height',0.0200

Data Types: double

Height of feed, specified as a scalar in meters.

Example: 'FeedHeight',0.0050

Data Types: double

Width of feed, specified as a scalar in meters.

Example: 'FeedWidth',5e-05

Data Types: double

Signed offset from center of ground plane, specified as a two-element vector in meters.

Example: 'FeedOffset',[–0.0070 0.01]

Data Types: double

Type of the metal used as a conductor, specified as a metal material object. You can choose any metal from the MetalCatalog or specify a metal of your choice. For more information, see metal. For more information on metal conductor meshing, see Meshing.

Example: m = metal('Copper'); 'Conductor',m

Example: m = metal('Copper'); ant.Conductor = m

Lumped elements added to the antenna feed, specified as a lumped element object. For more information, see lumpedElement.

Example: 'Load',lumpedelement. lumpedelement is the object for the load created using lumpedElement.

Example: hr.Load = lumpedElement('Impedance',75)

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more information, see Rotate Antennas and Arrays.

Example: Tilt=90

Example: Tilt=[90 90],TiltAxis=[0 1 0;0 1 1] tilts the antenna at 90 degrees about the two axes defined by the vectors.

Note

The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Tilt axis of the antenna, specified as:

  • Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

  • Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case, the antenna rotates around the line joining the two points in space.

  • A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see Rotate Antennas and Arrays.

Example: TiltAxis=[0 1 0]

Example: TiltAxis=[0 0 0;0 1 0]

Example: TiltAxis = 'Z'

Data Types: double

Object Functions

showDisplay antenna, array structures or shapes
infoDisplay information about antenna or array
axialRatioAxial ratio of antenna
beamwidthBeamwidth of antenna
chargeCharge distribution on antenna or array surface
currentCurrent distribution on antenna or array surface
designDesign prototype antenna or arrays for resonance around specified frequency
efficiencyRadiation efficiency of antenna
EHfieldsElectric and magnetic fields of antennas; Embedded electric and magnetic fields of antenna element in arrays
impedanceInput impedance of antenna; scan impedance of array
meshMesh properties of metal, dielectric antenna, or array structure
meshconfigChange mesh mode of antenna structure
optimizeOptimize antenna or array using SADEA optimizer
patternRadiation pattern and phase of antenna or array; Embedded pattern of antenna element in array
patternAzimuthAzimuth pattern of antenna or array
patternElevationElevation pattern of antenna or array
rcsCalculate and plot radar cross section (RCS) of platform, antenna, or array
returnLossReturn loss of antenna; scan return loss of array
sparametersCalculate S-parameter for antenna and antenna array objects
vswrVoltage standing wave ratio of antenna

Examples

collapse all

Create and view a default horn antenna.

h = horn
h = 
  horn with properties:

    FlareLength: 0.1020
     FlareWidth: 0.0571
    FlareHeight: 0.0338
         Length: 0.0500
          Width: 0.0190
         Height: 0.0095
      FeedWidth: 1.0000e-04
     FeedHeight: 0.0048
     FeedOffset: [-0.0155 0]
      Conductor: [1x1 metal]
           Tilt: 0
       TiltAxis: [1 0 0]
           Load: [1x1 lumpedElement]

show(h)

Figure contains an axes object. The axes object with title horn antenna element, xlabel x (mm), ylabel y (mm) contains 3 objects of type patch, surface. These objects represent PEC, feed.

References

[1] Balanis, Constantine A.Antenna Theory. Analysis and Design. 3rd Ed. New York: John Wiley and Sons, 2005.

Version History

Introduced in R2016a