Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
27:14 Video length is 27:14.
  • Description
  • Related Resources

Steady-State Lap Time Simulation

From the series: Student Teams Share Their Keys to Success

Paco Sevilla, Tufast Racing Team

Use lap time simulation to make better design decisions. Paco Sevilla, of TU Fast Formula Student team, and Christoph Hahn, of MathWorks, explain how lap time simulation can be used to compare vehicle concepts in the early design stage.

Reasons to use lap time simulation are varied. It allows performing parameter studies to evaluate racecar concepts and enables you to take advantage of the benefits of the aerodynamic package.

TUfast has integrated all algorithms into a clean and powerful app which allows the entire team to use the functionality. The basis for all calculations is the ggV-Diagram, often also denoted as the performance envelope. Paco explains the relation between maximum performance (velocity) and longitudinal and lateral acceleration (maximum forces that the tire-road interface can handle). Validation is crucial for TUfast as Paco illustrates. Before any decision is made based on the simulation tool, the team makes sure the vehicle model is representing the actual vehicle behavior with a maximum deviation of 5%.

A specialty at TUfast is their software tool without a driver model. The car is always evaluated at its limit using a steady-state approach. They divide the track into segments that are defined between corner apexes, where the corner radius is minimal, and pure lateral acceleration is assumed. Based on these segments, they integrate forward from e.g. apex 1 to 2 to determine maximum acceleration and from apex 2 to 1 they get the maximum possible deceleration by integrating backward. Intersecting both curves provides the point where the ideal driver would have to switch between acceleration and braking.

A good example to use simulation as a justification tool is also provided in the video. TUfast requires their aerodynamics team to evaluate aero efficiency, which is the ratio between down force and drag, for each concept they develop. A simulation routine then evaluates the FSAE points for efficiency competition and endurance event. In order to score more points, the aero kit has to fulfill a certain efficiency requirement.

In a final discussion round, Paco and Christoph agree that dynamic behavior could be taken into account with the cost of significantly higher numerical effort and effort to obtain transient test data. Their message to the community is to define the expectations for a simulation approach first and to choose the most efficient way to achieve these goals, usually less is more.

Related Products

  • MATLAB

Learn More

Watch related videos for students
Contact the MathWorks student competition team

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper
Related Information
Related Information
Watch related videos for students

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

Simplify your engine control unit by merging multiple devices and using an FPGA.  After an introduction to FPGAs and the Xilinx Zynq 7000 platform, Sebastian Straßl and Alexander Ehard, from Starkstrom Augsburg, demonstrate HDL code generation.
23:33
Developing a New Control Unit Using an FPGA
View full series (13 Videos)

Related Videos:

34:01
Lap Time Simulation; Essential Part of Concept Development
22:57
Real-Time Simulation of Battery Packs Using Multicore...
23:58
Design of a Real-Time Audible Noise Modeling Platform Using...
33:26
Developing Forecast Models from Time-Series Data in MATLAB...
6:39
saveValue Function for Tracking Metrics Over Time, Part 3:...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation