Cody

# Problem 2595. Polite numbers. Politeness.

Solution 824549

Submitted on 11 Feb 2016 by Daniel Pereira
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
%% x = 1; y_correct = 0; assert(isequal(politeness(x),y_correct))

P = 0

2   Pass
%% x = 2; y_correct = 0; assert(isequal(politeness(x),y_correct))

P = 0

3   Pass
%% x = 3; y_correct = 1; assert(isequal(politeness(x),y_correct))

P = 1

4   Pass
%% x = 7; y_correct = 1; assert(isequal(politeness(x),y_correct))

P = 1

5   Pass
%% x = 9; y_correct = 2; assert(isequal(politeness(x),y_correct))

P = 2

6   Pass
%% x = 15; y_correct = 3; assert(isequal(politeness(x),y_correct))

P = 3

7   Pass
%% x = 18; y_correct = 2; assert(isequal(politeness(x),y_correct))

P = 2

8   Pass
%% x = 21; y_correct = 3; assert(isequal(politeness(x),y_correct))

P = 3

9   Pass
%% x = 1024; y_correct = 0; assert(isequal(politeness(x),y_correct))

P = 0

10   Pass
%% x = 1025; y_correct = 5; assert(isequal(politeness(x),y_correct))

P = 5

11   Pass
%% x = 25215; y_correct = 11; assert(isequal(politeness(x),y_correct))

P = 11

12   Pass
%% x = 62; y_correct = 1; assert(isequal(politeness(x),y_correct))

P = 1

13   Pass
%% x = 63; y_correct = 5; assert(isequal(politeness(x),y_correct))

P = 5

14   Pass
%% x = 65; y_correct = 3; assert(isequal(politeness(x),y_correct))

P = 3

15   Pass
%% % anti-lookup & clue nums=primes(200); pattern=[1 nums([false ~randi([0 25],1,45)])]; x=prod(pattern)*2^randi([0 5]); y_correct=2^numel(pattern)/2-1; assert(isequal(politeness(x),y_correct))

P = 7

16   Pass
%% for k=randi(2e4,1,20) assert(isequal(politeness(k*(k-1))+1,(politeness(k)+1)*(politeness(k-1)+1))) end

P = 15 P = 1 P = 7 P = 7 P = 1 P = 3 P = 35 P = 1 P = 17 P = 15 P = 3 P = 3 P = 15 P = 3 P = 3 P = 31 P = 7 P = 3 P = 23 P = 5 P = 3 P = 31 P = 15 P = 1 P = 15 P = 3 P = 3 P = 63 P = 7 P = 7 P = 23 P = 5 P = 3 P = 15 P = 3 P = 3 P = 31 P = 7 P = 3 P = 15 P = 7 P = 1 P = 15 P = 3 P = 3 P = 15 P = 3 P = 3 P = 7 P = 1 P = 3 P = 7 P = 1 P = 3 P = 3 P = 1 P = 1 P = 31 P = 15 P = 1