Problem 2595. Polite numbers. Politeness.
Solution Stats
Problem Comments

5 Comments
There are some flaws when checking the solutions:
I think 15 has 4 combinations of sum of consecutive INTEGERS (as stated in the problem):
15 = 7+8 = 4+5+6 = 1+2+3+4+5 = 0+1+2+3+4+5; % 0 is integer.
or 1025 (you say 5, I say 9):
1025 = 1022+1023 = sum(203:207) = sum(98:107) = sum(29:53) = sum(5:45) = sum(4:45) = sum(28:53) = sum(97:107) = sum(202:207); % negative numbers are integers too.
I can see the flaw in the description now, I've missed repeating "positive", Thanks. Btw considering your interpretation 15 has 7 combinations: sum(14:15),sum(6:8),sum(3:6),sum(0:5),sum(1:5),sum(4:6),sum(7:8). In this way 1025 should have 11 and conversion between our interpretations is "yours=2*mine+1"; to any of mine solutions of the form m:n, you can add "m+1:n", the last thing is to add "input+1:input"
An interesting problem, enough so that I chose to solve it in three essentially different ways. As always, there are various ways to solve any problem. The first two ways were essentially constructive, so counting the set of solutions for any N. The last used a formulaic approach.
Politeness is an integer sequence defined at https://oeis.org/A069283.
@Dyuman Joshi: I do not know why that error occurs. I do know that it essentially means that the user needs to wait and resubmit their solution at a later time, sometimes the next day.
By the way, it's best to not post solutions (or solution attempts) in comments. Questions or comments specific to a solution can be posted in a comment tied to said solution or solution attempt.
Solution Comments

1 Comment
why it is showing"While evaluating the solution, the server encountered an error caused by temporary unavailability of MATLAB Service'' ...

1 Comment
So, doing a little reading about polite numbers, one finds that the politeness divisors is related to the number of odd divisors.

1 Comment
vectorized & constructive, explicitly counting all solutions for even and odd k

1 Comment
Brute force, with a while loop. crude as hell, but it works for a first pass.

1 Comment
Whit this solution you can check the correct number of combinations that summing consecutive integers give the input number.

2 Comments
Problem Recent Solvers130
Suggested Problems

Find the numeric mean of the prime numbers in a matrix.
7665 Solvers

4164 Solvers

269 Solvers

743 Solvers

82 Solvers
More from this Author40
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!