This challenge is an introduction to the wonderful word of java.math that allows unlimited precision calculations. The primary reference sites are Java Math, Java BigDecimal, and Java BigInteger.
The usage of BigDecimal functions add, multiply, and pow will be tested.
Java Math tutorial: (Simplified summary that is believed correct)
vd-decimal value, vstr-string, vi-integer value xBD=java.math.BigDecimal(vd); % valid vd,vstr,vi creates xBD a BigDecimal variable import java.math.*; % simplifies statements xBD=BigDecimal(vstr); x2pwrBD=xBD.pow(vi); % Invalid: vd,vstr,BD xplusyBD=xBD.add(BigDecimal(y)); % add input requires BD type xmultiplyzBD=xBD.multiply(BigDecimal(z)); % multiply input requires BD type
To convert java to string of unlimited length can be achieved via java toString or Matlab char
xstr=toString(xBD) or xstr=char(xBD)
Input: X,Y, function_case [X,Y double or str, function 1:X+Y, 2:X*Y, 3: X^Y(double)
Output: z (char variable)
Future Challenges:
1. nchoosek_large (full precision) 2. Next Prime 3. factor_large
4. Factorial
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers37
Suggested Problems
-
Find all elements less than 0 or greater than 10 and replace them with NaN
15780 Solvers
-
Who knows the last digit of pi?
689 Solvers
-
337 Solvers
-
Square Digits Number Chain Terminal Value (Inspired by Project Euler Problem 92)
253 Solvers
-
671 Solvers
More from this Author308
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
Nice problem to learn the use of java inside Matlab.
BigInteger of doubles above 128 does odd things. BigInteger(num2str(v_dbl)) will work up to 2^53. I did not go into BigInteger limitations.
Usage of BigInteger will cause headaches. The Challenge is BigDecimal.