differential evalution code Error using * Inner matrix dimensions must agree.
1 view (last 30 days)
Show older comments
Error in @(x)sum((minus((x(1)),V)*sin(2.*pi.*x(2).*t+x(3)).^2))/n Error in noise_de (line 56) pop(i).Cost=CostFunction(pop(i).Position);
- clear all; close all; clc
- fs=200; %sampling freq.
- dt =1/fs;
- n=fs/3 %number of samples/cycle
- m=3 %no. of cycles
- fi=50;
- t = dt*(0:400); %data window
- ww=wgn(201,1,-40);
- size(transpose(ww))
- t =dt*(0:200);
- y=sin(2*pi*fi*t + 0.3);
- for j=0:200/(n*m)
- t =dt*(j*m*n:(j+1)*m*n);
- x=sin(2*pi*fi*t + 0.3)+transpose(wgn(1+n*m,1,-40));
- V=x
- tmax=0.01;
- lastreported=0;
- %% Problem Definition
- t_est=[];
- f_est=[];
- dt=1/fs;
- i_max=tmax*fs
- for ii=0:i_max
- if(ii/i_max*100-lastreported>=1)
- lastreported=ii/i_max*100;
- fprintf('%5.2f%%\n',lastreported);
- end
- t=(ii:ii+n-1)*dt;
- CostFunction=@(x) sum((minus((x(1)),V)*sin(2*pi.*x(2).*t+x(3)).^2))/n; % Cost Function
- nVar=3; % Number of Decision Variables
- VarSize=[1 nVar]; % Decision Variables Matrix Size
- VarMin=[0,48,0]; % Lower Bound of Decision Variables
- VarMax=[1000,52,2*pi]; % Upper Bound of Decision Variables
- %% DE Parameters
- MaxIt=200; % Maximum Number of Iterations
- nPop=50; % Population Size
- beta=0.5; % Scaling Factor
- pCR=0.2; % Crossover Probability
- minCost=1e-10;
- %% Initialization
- empty_individual.Position=[];
- empty_individual.Cost=[];
- BestSol.Cost=inf;
- pop=repmat(empty_individual,nPop,1);
- for i=1:nPop
- pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
- pop(i).Cost=CostFunction(pop(i).Position);
- if pop(i).Cost<BestSol.Cost
- BestSol=pop(i);
- end
- end
- BestCost=zeros(MaxIt,1);
- %% DE Main Loop
- for it=1:MaxIt
- for i=1:nPop
- x=pop(i).Position;
- A=randperm(nPop);
- A(A==i)=[];
- a=A(1);
- b=A(2);
- c=A(3);
- % Mutation
- %beta=unifrnd(beta_min,beta_max);
- y=pop(a).Position+beta.*(pop(b).Position-pop(c).Position);
- y = max(y, VarMin);
- y = min(y, VarMax);
- % Crossover
- z=zeros(size(x));
- j0=randi([1 numel(x)]);
- for j=1:numel(x)
- if j==j0 || rand<=pCR
- z(j)=y(j);
- else
- z(j)=x(j);
- end
- end
- NewSol.Position=z;
- NewSol.Cost=CostFunction(NewSol.Position);
- if NewSol.Cost<pop(i).Cost
- pop(i)=NewSol;
- if pop(i).Cost<BestSol.Cost
- BestSol=pop(i);
- end
- end
- end
- % Update Best Cost
- BestCost(it)=BestSol.Cost;
- % Show Iteration Information
- %disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
- if(minCost>BestSol.Cost)
- break;
- ErrorTarget=0.00000001;
- EvalMax=10000*n;
- end
- end
- %% Show Results
- % disp(['Iteration ' num2str(ii) ': Best Cost = ' num2str(BestSol.Position(2))]);
- t_est=[t_est;(ii)*dt];
- f_est=[f_est;BestSol.Position(2)];
- if(minCost>BestSol.Cost)
- %break;
- ErrorTarget=0.00000001;
- EvalMax=10000*n;
- end
- end
- end
- t_est
- f_est
- plot (t_est,f_est,'red')
- hold on
- xlabel('time')
- ylabel('frequency')
- title('DE white noise ')
- c=vpa(rms(fi(t_est)-f_est))
- plot (t_est,fi*ones(size(t_est)))
- hold off
0 Comments
Accepted Answer
Stephan
on 2 Dec 2020
@(x)sum((minus((x(1)),V).*sin(2.*pi.*x(2).*t+x(3)).^2))/n
% ^
% |
% ------- Elementwise multiplication
19 Comments
Stephan
on 3 Dec 2020
Edited: Stephan
on 3 Dec 2020
The problem is here:
t_est=[t_est;(ii+n-1)*dt];
this leads to values of t_est ranging from 0...1 - not 0...200 as expected. If you change it to:
t_est=[t_est; (ii-1)*dt*fs];
The values are scaled 0...200. But due to missing insight in the problem i dont know if this is correct. At least the plot seems to be ok.
Since fi is ascalar, it wont plot - i suggest to use yline instead:
plot(t_est,f_est,'red')
xlim([0 200])
yline(fi)
xlabel('time')
ylabel('frequency')
title('DE white noise')
So once again the whole code:
clear all; close all; clc
fs=200; %sampling freq.
dt =1/fs;
n=fs/3 %number of samples/cycle
m=3 %no. of cycles
fi=50;
t = linspace(0,200,1+n*m); %data window
v=@(t) (sin(2*pi*fi.*t + 0.3)+ transpose(wgn(1+n*m,1,-40)));
tmax=1;
t_est=[];
f_est=[];
dt=1/fs;
i_max=tmax*fs;
for ii=0:i_max
V=v(t);
CostFunction=@(x) sum((V-x(1)*sin(2*pi*x(2)*t+x(3))).^2)/n; % Cost Function
nVar=3; % Number of Decision Variables
VarSize=[1 nVar]; % Decision Variables Matrix Size
VarMin=[0,48,0]; % Lower Bound of Decision Variables
VarMax=[1000,52,2*pi]; % Upper Bound of Decision Variables
%% DE Parameters
MaxIt=1000; % Maximum Number of Iterations
nPop=50; % Population Size
beta=0.5; % Scaling Factor
pCR=0.2; % Crossover Probability
minCost=1e-10;
%% Initialization
empty_individual.Position=[];
empty_individual.Cost=[];
BestSol.Cost=inf;
pop=repmat(empty_individual,nPop,1);
for i=1:nPop
pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
pop(i).Cost=CostFunction(pop(i).Position);
if pop(i).Cost<BestSol.Cost
BestSol=pop(i);
end
end
BestCost=zeros(MaxIt,1);
%% DE Main Loop
for it=1:MaxIt
for i=1:nPop
x=pop(i).Position;
A=randperm(nPop);
A(A==i)=[];
a=A(1);
b=A(2);
c=A(3);
% Mutation
%beta=unifrnd(beta_min,beta_max);
y=pop(a).Position+beta.*(pop(b).Position-pop(c).Position);
y = max(y, VarMin);
y = min(y, VarMax);
% Crossover
z=zeros(size(x));
j0=randi([1 numel(x)]);
for j=1:numel(x)
if j==j0 || rand<=pCR
z(j)=y(j);
else
z(j)=x(j);
end
end
NewSol.Position=z;
NewSol.Cost=CostFunction(NewSol.Position);
if NewSol.Cost<pop(i).Cost
pop(i)=NewSol;
if pop(i).Cost<BestSol.Cost
BestSol=pop(i);
end
end
end
% Update Best Cost
BestCost(it)=BestSol.Cost;
% Show Iteration Information
%disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
if(minCost>BestSol.Cost)
break;
end
end
%% Show Results
disp(['Iteration ' num2str(ii) ': Best Cost = ' num2str(BestSol.Position(2))]);
t_est=[t_est; (ii-1)*dt*fs];
f_est=[f_est;BestSol.Position(2)];
end
t_est
f_est
RMSE = sqrt(mean((f_est-fi).^2))
plot(t_est,f_est,'red')
xlim([0 200])
yline(fi)
xlabel('time')
ylabel('frequency')
title('DE white noise')
More Answers (0)
See Also
Categories
Find more on Graph and Network Algorithms in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!