Simulating multiple model parameterizations using scenarios and simfunctions

2 views (last 30 days)
Hello,
I'm having trouble simultaneously simulating multiple parameterizations of a model using simfunctions and scenarios, in R2019b. Please refer to the example below. Is there a proper way of doing this? I think I could get around this error be inputting all of the parameterizations when calling 'createSimFunction', but this is not possible in my application because I do not know a priori how many different parameterizations I plan to simulate.
Thank you,
Abed
% The following works:
sbioloadproject('insulindemo','m1');
variants = getvariant(m1);
singleMeal = sbioselect(m1,'Name','Single Meal');
sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal);
sObj.verify(m1);
f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[]);
sd = f(sObj,24);
% But the following triggers an error:
nIndivs = 2; % number of parameterizations (let's pretend each individual has different parameterizations -- although in this example they have the same parameterization).
for iEntry = 1:sObj.NumberOfEntries
sObj = sObj.updateEntry(iEntry,'Content',repmat(sObj.getEntry(iEntry).Content,nIndivs,1));
end
sObj.verify(m1);
sd2 = f(sObj,24);

Accepted Answer

Abed Alnaif
Abed Alnaif on 12 Dec 2019
Hello,
Fulden emailed me an example of how to get this to work, and I'm posting it here for reference. Thank you, Florian and Fuilden, for your help with this. This is my first time using the new scenarios object, and I'm really liking it now that I experienced its flexibility and how one can construct complex combinations with very few lines of code. It's a very nice addition to SimBiology! It would be good in the future if the 'sbiofit' command allowed the user to specify different scenarios for each of the groups.
clc
clear
m = sbmlimport('lotka');
cs = getconfigset(m);
set(cs.SolverOptions, 'RelativeTolerance', 1e-6);
% Define doses
d1 = sbiodose('dose for y1');
set(d1, 'TargetName', 'y1');
set(d1, 'Amount', 50);
d2 = sbiodose('dose for y2');
set(d2, 'TargetName', 'y2');
set(d2, 'Amount', 50);
% Define variants
v1 = sbiovariant('individual1');
v1.addcontent({'species', 'y1', 'value', 900});
v2 = sbiovariant('individual2');
v2.addcontent({'species', 'y1', 'value', 900});
v3 = sbiovariant('individual3');
v3.addcontent({'species', 'y1', 'value', 900});
% Create scenarios over variants and doses:
sObj = SimBiology.Scenarios('individuals', [v1, v2]);
add(sObj, 'cartesian', 'doses', [d1, d2]);
% Print content of scenarios object
disp(sObj)
% Create SimFunction and evaluate
f = createSimFunction(m, sObj, {'y1', 'y2'}, [], 'AutoAccelerate', false);
sd = f(sObj, 10);
sbioplot(sd);
% Add additional values to scenarios
sObj.updateEntry('individuals','Content', [v1, v2, v3]);
% Print content of scenarios object
disp(sObj)
sd = f(sObj, 10);
sbioplot(sd);

More Answers (1)

Florian Augustin
Florian Augustin on 10 Dec 2019
Hi Abed,
The short answer why you see the error message is that the SimFunction is being created with one dose input, and it is called (after the modification of the scnearios object) with two dose inputs. In the scearios object, each element in the dose entry is treated as a separate dose input to the SimFunction. The immediate fix would be to create a new SimFunction after you updated the scenarios object.
But this may be expensive in your application and possibly unnecessary. In your example you mention different parameterizations of your doses. In this case, you may be able to use parameterized doses? You could create a scenarios object containing the parameterization parameter(s) instead of the dose objects:
sbioloadproject('insulindemo', 'm1');
variants = getvariant(m1);
singleMeal = sbioselect(m1, 'Name', 'Single Meal');
addparameter(m1, 'DoseAmount', 78, 'Units', 'gram');
set(singleMeal, 'Amount', 'DoseAmount');
sObj = SimBiology.Scenarios;
add(sObj,'cartesian', 'variants', variants);
add(sObj,'cartesian', 'DoseAmount', [75, 78, 85]);
sObj.verify(m1);
f = createSimFunction(m1, sObj, {'[Plasma Glu Conc]', '[Plasma Ins Conc]'}, singleMeal);
sd = f(sObj, 24, getTable(singleMeal));
There may be other options, but those probably depend on your application.
I hope this helps, but feel free to follow up if there's anything we can help with.
Best,
-Florian
  5 Comments
Florian Augustin
Florian Augustin on 11 Dec 2019
Hi Abed,
You are right, unfortunately there are cases where you will have to create a new SimFunction. Your example points out one of those: if you combine different doses elementwise with value entries, then you will need to create a new SimFunction if the number of doses in the scenarios changes. Otherwise, you'd need to do some unnecessary simulations which may be more wasteful than creating a new SimFunction.
Since you mentioned that you are actually planing on exploring non-dose related parameters, here is another thought that may help. If the dosing stays the same accross all scenarios, you could do the following:
m = sbmlimport('lotka');
cs = getconfigset(m);
set(cs.SolverOptions, 'RelativeTolerance', 1e-6);
% Define doses
d1 = sbiodose('dose for y1');
set(d1, 'TargetName', 'y1');
set(d1, 'Amount', 50);
d2 = sbiodose('dose for y2');
set(d2, 'TargetName', 'y2');
set(d2, 'Amount', 50);
% Create scenarios:
sObj = SimBiology.Scenarios;
add(sObj, 'elementwise', 'y1', [850, 900, 950]);
add(sObj, 'elementwise', 'y2', [900, 901, 902]);
% Create SimFunction and evaluate
f = createSimFunction(m, sObj, {'y1', 'y2'}, [d1, d2]);
sd = f(sObj, 10, getTable([d1, d2]));
sbioplot(sd)
% Add additional values to scenarios
sObj.updateEntry('y1','Content',[850, 900, 950, 1000]);
sObj.updateEntry('y2','Content',[900, 901, 902, 903]);
sd = f(sObj, 10, getTable([d1, d2]));
sbioplot(sd)
You will get the same behavior if you bundled the doses in a separate scenarios object:
m = sbmlimport('lotka');
cs = getconfigset(m);
set(cs.SolverOptions, 'RelativeTolerance', 1e-6);
% Define doses
d1 = sbiodose('dose for y1');
set(d1, 'TargetName', 'y1');
set(d1, 'Amount', 50);
d2 = sbiodose('dose for y2');
set(d2, 'TargetName', 'y2');
set(d2, 'Amount', 50);
% Create scenarios:
sObj = SimBiology.Scenarios('y1', [850, 900, 950]);
add(sObj, 'elementwise', 'y2', [900, 901, 902]);
sObjForDoseBundling = SimBiology.Scenarios('dose1', d1);
sObjForDoseBundling.add('elementwise', 'dose2', d2);
sObj = sObj.add('cartesian', sObjForDoseBundling);
% Create SimFunction and evaluate
f = createSimFunction(m, sObj, {'y1', 'y2'}, []);
sd = f(sObj, 10);
sbioplot(sd)
% Add additional values to scenarios
sObj.updateEntry('y1', 'Content', [850, 900, 950, 1000]);
sObj.updateEntry('y2', 'Content', [900, 901, 902, 903]);
sd = f(sObj, 10);
sbioplot(sd)
Best,
-Florian
Abed Alnaif
Abed Alnaif on 11 Dec 2019
Hi Florian,
In my application, the doses aren't the same across the scenarios. In some scenarios, a dose is not active, in which case I replaced the dose object with an empty dose object. So, I can't use 'cartesian' combinations.
Thanks,
Abed

Sign in to comment.

Communities

More Answers in the  SimBiology Community

Categories

Find more on Simulate Responses to Biological Variability and Doses in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!