unweighted least square estimation with fminsearch

1 view (last 30 days)
Hallo every one,
I have an equation or model which it must be fited to a part of a real signal (radar waveform) in order to estimate three parameter.
I should do an unweighted least-square estimation whose convergence is reachedt through the Nelder-Mead (NM) algorithm.
max nummber of iteration allowed is 600 , and the function toleranc is 10^-01
and wenn convergence is not met, i must widening the real signal that i have by one value until convergence is reached.
so far
  • I wrote the equation with all the constansts
  • took the sum of squares cost function and make it handle function
  • tried to reach the convergence and get the parameters
%% Brown Modell fitting
k = size(n_1);
t = k* rt ;
% Constant Parameters
alt_20hz= lat_01(1,1);
off_nadir_angle_wf_20hz_ku = F_off_nadir_angle_wf_ocean_01_ku(1,1) ;
c = 299792458 ; % speed of light m/s
Re = 6371000 ; % the earth raduis meters
antenna_w = rad2deg(1.28) ; % the antenna beam width
rt = 3.125 * 10.^-6 ; % time resolution nano seoconds
sigma_p = 0.513 * rt ; % width of the radar point target response
% the Equation
lamda = (sin(antenna_w).^ 2 )* (1 / ( 2 * log(2)));
a = (4 * c ) / (lamda .* alt_20hz * (1+ (alt_20hz / Re)));
b_offnadirangel = cos( 2 .* sqrt(off_nadir_angle_wf_20hz_ku)) - (( sin(2 * off_nadir_angle_wf_20hz_ku)) / lamda ) ;
c_offnadirangel = b_offnadirangel .* a ;
a_offnadirangel = exp(-4* sin(off_nadir_angle_wf_20hz_ku))./ (lamda);
% Parameter estimation
MaxIter =600 ;
f1 = n_1 ; % the real signal
fun = @(P)sum(f1 - (a_offnadirangel .* P(1).^(( 1 + erf((t - P(2) - c_offnadirangel .* P(3).^2 )/...
( sqrt(2) .* P(3))) ) / 2) .* exp(-1 .*(c_offnadirangel .* ( t - P(2) - (0.5 .* c_offnadirangel .* P(3).^2)))) + Tn)).^2 % sum of squares cost function
% Start with the default options
options = optimset;
options = optimset(options,'Display', 'off');
options = optimset(options,'MaxIter', 600);
options = optimset(options,'MaxFunEvals', 600);
options = optimset(options,'TolFun', 10^-10);
options = optimset(options,'TolX', 10^-10);
x0 =[0,0,0]; % initial Parameter estimation
MaxIter = 600 ;
Tol_fun = 10^-10 ;
% wenn the convergence is not reach the stop gate is increased one (the estimation window is windend)
while c <= MaxIter
P = fminsearch(fun,x0,options); % Minimise 'cost P'
if abs(fun) < Tol_fun
break;
else
stop_gate = stop_gate +1
n_1 = waveform_norm(edge_foot(1):stop_gate(1))' ;
P = fminsearch(fun, x0, options);
end
c=c+1 ;
end
I seems like I am doing something wrong, I am getting the following error :
Unable to perform assignment because the size of the left side is 1-by-1 and the size of the right side is 1-by-2.
Error in fminsearch (line 200)
fv(:,1) = funfcn(x,varargin{:});
Can someone help me with this? Big thanks in advance!

Answers (1)

Star Strider
Star Strider on 15 Nov 2018
You should be summing the squares, not squaring the sum.
Try this:
fun = @(P)sum((f1 - (a_offnadirangel .* P(1).^(( 1 + erf((t - P(2) - c_offnadirangel .* P(3).^2 )/...
( sqrt(2) .* P(3))) ) / 2) .* exp(-1 .*(c_offnadirangel .* ( t - P(2) - (0.5 .* c_offnadirangel .* P(3).^2)))) + Tn)).^2) % sum of squares cost function
I cannot run your code, so I cannot test this.
  9 Comments
Torsten
Torsten on 16 Nov 2018
Then something is wrong with your function "fun". It must return a scalar value (size must be [1 1 ]).
Rima Habib
Rima Habib on 16 Nov 2018
Torsten, thank you for your hint, I will review my work to find out the error in the function

Sign in to comment.

Categories

Find more on Creating and Concatenating Matrices in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!