Using fsolve - solve for multiple variables using one input

4 views (last 30 days)
I'm not new to Matlab, but I am quite bad at it. I need to run an optimization problem on the general shock wave equations and I am stuck. So, I have the 3 conservation equations (shown below as fmass, fmom, fen1, and fen2). fen2 is just another equation to solve for change in enthalpy. My problem is I have 4 unknowns: P2, rho2, u2, and DeltaH, but only one input (P). Here, P is an initial guess for P2. What I need is to give the function one input and have it solve for the 4 unknowns. It will do so when the DeltaH from fe1 = DeltaH from fen2. I hope this makes sense. The most important thing here is to find the proper DeltaH using ONLY my initial guess of P2. I'm not quite sure how to do this; like I said, I'm not very good at this. Here is the function code I have so far (I attached the file as well):
function F = deltah(P)
% The vector P is a vector of the unknowns in these equations, i.e. P2
rho1 = 2.3916; %kg/m3
P1 = 78600; %Pa
T1 = 295; %K
u1 = 372.3516; %m/s
kappa = 1.28641936633961e-05;
beta = 0.0034;
cp = 778.253929133643;
cv = 666.318314616417;
% fmass = conservation of mass equation
fmass = X(3) - (rho1*u1)/X(2);
% fmom = conservation of momentum equation
fmom = X(1) - P1 + (((rho1^2)*(u1^2))/X(2)) - rho1*(u1^2);
% fen1 = conservation of energy equation in terms of u and rho
fen1 = X(4) - (u1^2)/2 + (((rho1^2)*(u1^2))/(2*(X(2)^2)));
% fen2 = conservation of energy equation in terms of thermodynamic
% coefficients cp, cv, beta, the density rho, and pressure
fen2 = X(4) - (X(1)-P1)*(cv*kappa/beta) + (cp/beta)*(ln(X(2)/rho1));
F = [fmass; fmom; fen1; fen2];
end
Update: I thought this worked when I gave initial guesses for everything, but it doesn't. I'm really stuck now.
  4 Comments
Torsten
Torsten on 21 Mar 2018
Edited: Torsten on 21 Mar 2018
And what problems do you encounter if you add initial values for X0 and run the following code ?
X0 = ...;
[Soln] = fsolve(@deltah,X0,options)
function F = deltah(X)
% The vector P is a vector of the unknowns in these equations, i.e. P2
rho1 = 2.3916; %kg/m3
P1 = 78600; %Pa
T1 = 295; %K
u1 = 372.3516; %m/s
kappa = 1.28641936633961e-05;
beta = 0.0034;
cp = 778.253929133643;
cv = 666.318314616417;
% fmass = conservation of mass equation
fmass = X(3) - (rho1*u1)/X(2);
% fmom = conservation of momentum equation
fmom = X(1) - P1 + (((rho1^2)*(u1^2))/X(2)) - rho1*(u1^2);
% fen1 = conservation of energy equation in terms of u and rho
fen1 = X(4) - (u1^2)/2 + (((rho1^2)*(u1^2))/(2*(X(2)^2)));
% fen2 = conservation of energy equation in terms of thermodynamic
% coefficients cp, cv, beta, the density rho, and pressure
fen2 = X(4) - (X(1)-P1)*(cv*kappa/beta) + (cp/beta)*(ln(X(2)/rho1));
F = [fmass; fmom; fen1; fen2];
end
PATRICK WAYNE
PATRICK WAYNE on 21 Mar 2018
I do get values when I assign guesses for all four inputs, but the results are not valid, at least I don't think so. I'll have to try and figure out how to confirm them, but if they are good then all I need to do is figure out how to put this in a loop.

Sign in to comment.

Answers (0)

Categories

Find more on Thermodynamics and Heat Transfer in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!