Solving a nonlinear equation with numerical integration

6 views (last 30 days)
Hello everybody,
I am pretty new in Matlab and struggling at the moment. I want to calculate two unknown parameters (x1 and x2) from two equations with integrals inside.
The Values P1, P2, S1, S2, C1, C2 are known and have the datatype double.
B(lambda) and e(lambda) are datasets (x,y) stored in arrays that describe the filter curves (also double).
Many thanks for your help.

Answers (1)

Torsten
Torsten on 30 Nov 2017
Edited: Torsten on 30 Nov 2017
First method:
1. Fit functions B1(lambda), B2(lambda), e1(lambda) and e2(lambda) to your data in the different ranges (500 to 550 and 600 to 650).
2. Call fsolve as
fun = @(x)[P1-S1*integral(@(lambda)B1(lambda).*e1(lambda).*(1-exp(-x(1)./lambda.^1.39)).*c1./(lambda.^5.*(exp(c2./(lambda*x(2)))-1)),500,550),P2-S2*integral(@(lambda)B2(lambda).*e2(lambda).*(1-exp(-x(1)./lambda.^1.39)).*c1./(lambda.^5.*(exp(c2./(lambda*x(2)))-1)),600,650)];
x0 = [1, 1];
xsol = fsolve(fun,x0)
Second method:
function main
S1 = ...;
S2 = ...;
P1 = ...;
P2 = ...;
l = ...;
e = ...;
B = ...;
x0 = [1, 1];
xsol = fsolve(@(x)fun(x,S1,S2,P1,P2,l,e,B),x0);
function res = fun(x,S1,S2,P1,P2,l,e,B)
interpe = @(lambda)interp1(l,e,lambda);
interpB = @(lambda)interp1(l,B,lambda);
funI = @(lambda)interpe(lambda).*interpB(lambda).*(1-exp(-x(1)./lambda.^1.39)).*c1./(lambda.^5.*(exp(c2./(lambda*x(2)))-1));
res = [P1-S1*integral(funI,500,550),P2-S2*integral(funI,600,650)];
Best wishes
Torsten.
  10 Comments
Torsten
Torsten on 1 Dec 2017
Edited: Torsten on 1 Dec 2017
Remove the two "end" statements in your code.
Remove the semicolon after
function res = fun(x,S1,S2,P1,P2,l,e,B1,B2);
Best wishes
Torsten.
Michael Bond
Michael Bond on 1 Dec 2017
I've did it, it says "All functions in a script must be closed with an 'end'."

Sign in to comment.

Categories

Find more on Creating and Concatenating Matrices in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!