Cant find roots with fzero

3 views (last 30 days)
Jarl Bergström
Jarl Bergström on 8 Jun 2015
Commented: Walter Roberson on 15 Mar 2017
This is pretty straight forward.
I have to following equation:
syms T
Qbalance(T) =(2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273)^4)/4835703278458516698824704 - 4489244199846279/70368744177664
And I'm trying to find one of the possible roots by using fzero: fzero(Qbalance,40) I know that one root is ~42 :-)
But it doesnt seem to work. Any idea what I can do to make it work anywhere between T = [-100 100] ?
Thanks!
  1 Comment
Torsten
Torsten on 8 Jun 2015
fzero does not work with symbolic variables or expressions.
Use "solve" instead.
Best wishes
Torsten.

Sign in to comment.

Answers (2)

Titus Edelhofer
Titus Edelhofer on 8 Jun 2015
Hi,
either do what Torsten suggests, or create a function handle instead of using syms:
Qbalance = @(T) (2585111364437669*T)/2 ...
And yes, it's 42:
answerToEverything = round(fzero(Qbalance, 40))
answerToEverything =
42
;-)
Titus
  2 Comments
Jarl Bergström
Jarl Bergström on 8 Jun 2015
Thank you very much for your replay!
The thing is, that doesn't seems to work if I have:
syms T
a=1+T
b=T
and then Q = @(T) a+b or Q=a+b
How can I put that equation into fzero?
The reason for why I dont want to use solve is because I get 4 roots and I don't know how to separate the correct one, because T can be both positive and negative.

Sign in to comment.


John D'Errico
John D'Errico on 8 Jun 2015
Edited: John D'Errico on 8 Jun 2015
No. It is NOT 42. Close, but no cigar. Unless of course, you round the result as did Titus. :)
If you are going to use syms, then why in the name of god and little green apples, why not solve? This is a 4th order polynomial after all.
syms T
Qbalance = (2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273)^4)/4835703278458516698824704 - 4489244199846279/70368744177664;
vpa(solve(Qbalance))
ans =
-1270.5696869775977378281084791948
42.330660289301496605774980024324
68.119513344148120611166749585241 + 814.64831383344987959986838110296i
68.119513344148120611166749585241 - 814.64831383344987959986838110296i
Looks like more like 42.33066... to me.
roots(sym2poly(Qbalance))
ans =
-1270.5696869776 + 0i
68.1195133441485 + 814.64831383345i
68.1195133441485 - 814.64831383345i
42.3306602893015 + 0i
Roots agrees.
Qbalance = @(T) (2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273).^4)/4835703278458516698824704 - 4489244199846279/70368744177664;
ezplot(Qbalance,[41,43])
grid on
Yep, the plot says so too. As does fzero, with absolutely no problems.
format long g
fzero(Qbalance,[0,100])
ans =
42.3306602893015
  4 Comments
Tewodros Bitaw
Tewodros Bitaw on 15 Mar 2017
Edited: Tewodros Bitaw on 15 Mar 2017
Hi Jarl I think this works better.
syms T
T0=298.15;
Qbalance(T) =(2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273)^4)/4835703278458516698824704 - 4489244199846279/70368744177664 Q=matlabFunction(Qbalance(T))
T=fzero(Q,T0)
T =
42.3307
Walter Roberson
Walter Roberson on 15 Mar 2017
4835703278458516698824704 cannot be kept at full precision in the form shown.
syms T positive
Q = @(v) sym(v,'r');
T0 = Q(298.15);
Qbalance(T) =(sym('2585111364437669')*T)/sym('2251799813685248') + (sym('7434051551537793')*(T + sym(273))^4)/sym('4835703278458516698824704') - sym('4489244199846279')/sym('70368744177664')
solve(Qbalance(T))
The solution (in recent MATLAB) is
root(z^4 + 1092*z^3 + 447174*z^2 + (6156509634857202603287236*z)/7434051551537793 - 89068512980281706423859477/2478017183845931, z, 2)
which can be found to arbitrary precision using vpa(), or converted to double precision with double()

Sign in to comment.

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!