Cant find roots with fzero
3 views (last 30 days)
Show older comments
This is pretty straight forward.
I have to following equation:
syms T
Qbalance(T) =(2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273)^4)/4835703278458516698824704 - 4489244199846279/70368744177664
And I'm trying to find one of the possible roots by using fzero: fzero(Qbalance,40) I know that one root is ~42 :-)
But it doesnt seem to work. Any idea what I can do to make it work anywhere between T = [-100 100] ?
Thanks!
1 Comment
Torsten
on 8 Jun 2015
fzero does not work with symbolic variables or expressions.
Use "solve" instead.
Best wishes
Torsten.
Answers (2)
Titus Edelhofer
on 8 Jun 2015
Hi,
either do what Torsten suggests, or create a function handle instead of using syms:
Qbalance = @(T) (2585111364437669*T)/2 ...
And yes, it's 42:
answerToEverything = round(fzero(Qbalance, 40))
answerToEverything =
42
;-)
Titus
2 Comments
John D'Errico
on 8 Jun 2015
Edited: John D'Errico
on 8 Jun 2015
No. It is NOT 42. Close, but no cigar. Unless of course, you round the result as did Titus. :)
If you are going to use syms, then why in the name of god and little green apples, why not solve? This is a 4th order polynomial after all.
syms T
Qbalance = (2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273)^4)/4835703278458516698824704 - 4489244199846279/70368744177664;
vpa(solve(Qbalance))
ans =
-1270.5696869775977378281084791948
42.330660289301496605774980024324
68.119513344148120611166749585241 + 814.64831383344987959986838110296i
68.119513344148120611166749585241 - 814.64831383344987959986838110296i
Looks like more like 42.33066... to me.
roots(sym2poly(Qbalance))
ans =
-1270.5696869776 + 0i
68.1195133441485 + 814.64831383345i
68.1195133441485 - 814.64831383345i
42.3306602893015 + 0i
Roots agrees.
Qbalance = @(T) (2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273).^4)/4835703278458516698824704 - 4489244199846279/70368744177664;
ezplot(Qbalance,[41,43])
grid on
Yep, the plot says so too. As does fzero, with absolutely no problems.
format long g
fzero(Qbalance,[0,100])
ans =
42.3306602893015
4 Comments
Tewodros Bitaw
on 15 Mar 2017
Edited: Tewodros Bitaw
on 15 Mar 2017
Hi Jarl I think this works better.
syms T
T0=298.15;
Qbalance(T) =(2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273)^4)/4835703278458516698824704 - 4489244199846279/70368744177664 Q=matlabFunction(Qbalance(T))
T=fzero(Q,T0)
T =
42.3307
Walter Roberson
on 15 Mar 2017
4835703278458516698824704 cannot be kept at full precision in the form shown.
syms T positive
Q = @(v) sym(v,'r');
T0 = Q(298.15);
Qbalance(T) =(sym('2585111364437669')*T)/sym('2251799813685248') + (sym('7434051551537793')*(T + sym(273))^4)/sym('4835703278458516698824704') - sym('4489244199846279')/sym('70368744177664')
solve(Qbalance(T))
The solution (in recent MATLAB) is
root(z^4 + 1092*z^3 + 447174*z^2 + (6156509634857202603287236*z)/7434051551537793 - 89068512980281706423859477/2478017183845931, z, 2)
which can be found to arbitrary precision using vpa(), or converted to double precision with double()
See Also
Categories
Find more on Assumptions in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!