Stacked Cuboid for PDE Domain
10 views (last 30 days)
Show older comments
Can the following domain be created for use in the PDE Toolbox? It does not seem that ordinary operations with the multicuboid function can stack cuboids with different width and heights, but is there another way?
Thanks!
0 Comments
Accepted Answer
Ravi Kumar
on 9 Feb 2024
Edited: Ravi Kumar
on 10 Feb 2024
Here is an example, use this code and modify the dimensions.
% Define the first square of size 1
x1 = [0; 1; 1; 0]; % x-coordinates
y1 = [0; 0; 1; 1]; % y-coordinates
% Define the second square of size 0.5
x2 = [0.25; 0.75; 0.75; 0.25]; % x-coordinates
y2 = [0.25; 0.25; 0.75; 0.75]; % y-coordinates
% Concatenate coordinates for decsg input
rect1 = [3; 4; x1; y1]; % First square definition
rect2 = [3; 4; x2; y2]; % Second square definition
% Create geometry matrix for decsg
gdm = [rect1, rect2]; % Geometry description matrix
ns = char('R1', 'R2'); % Name space matrix
sf = 'R1+R2'; % Set formula
ns = ns';
% Create the 2-D geometry using decsg
gd = decsg(gdm, sf, ns);
% Create a fegeometry
gm = fegeometry(gd);
% Now, extrude the 2-D geometry to a 3-D geometry with a length of 1
gm = extrude(gm, 1);
% Merge the cells in the 3-D geometry
cellIDsToMerge = [1, 2];
gm = mergeCells(gm, cellIDsToMerge);
% Find the smaller of the two faces at the top
% We use a point above the center of the smaller square along the z-axis
topSmallerSquareCenterPoint = [0.5, 0.5, 1]; % Row vector for coordinates
topSmallerFaceID = nearestFace(gm, topSmallerSquareCenterPoint);
% Extrude the smaller top face by a length of 1
gm = extrude(gm, topSmallerFaceID, 1);
% Rotate the complete geometry by 180 degrees around the x-axis
% to place the new smaller cube at the bottom
axisOfRotation = [1, 0, 0]; % Rotation axis (x-axis)
pointOnAxis = [0, 0, 0]; % A point on the axis of rotation (origin)
angleOfRotation = 180; % Rotation angle in radians (180 degrees)
gm = rotate(gm, angleOfRotation, axisOfRotation, pointOnAxis);
% Now the complete geometry is rotated, and the smaller cube is at the bottom
pdegplot(gm)
5 Comments
Torsten
on 10 Feb 2024
In old FLUENT/Gambit, you can just define the two volumes by the 8 corner points. Then there is a command "split" that splits the big face by the small face where the two volumes meet. That's all. After this, you can mesh both volumes separately.
More Answers (2)
Torsten
on 8 Feb 2024
Edited: Torsten
on 8 Feb 2024
Usually in such cases the domain is divided into subcubes that share common faces.
E.g. the upper cube could be divided into 9 obvious subcubes: 3 in the left part, 3 in the middle and 3 in the right part.
2 Comments
Torsten
on 8 Feb 2024
Edited: Torsten
on 8 Feb 2024
I don't know about the capabilities of the geometry builder of the PDE Toolbox.
Is it not possible to create two cuboids that share a common face and unite them ?
But looking at the examples, it seems best to create the geometry in an external CAD program and then import it in MATLAB.
Ravi Kumar
on 13 Feb 2024
Our geometry expert provided a much compact version to create this geometry:
g=fegeometry(multicuboid([1 2],[1 2],2))
g2=extrude(g,2,1)
g3=mergeCells(g2,[1 2])
pdegplot(g3,FaceAlpha=0.8,CellLabels="on")
See Also
Categories
Find more on Geometry and Mesh in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!