I want to plot Basin of attraction. I have written a few line of code given below.Please help some one
23 views (last 30 days)
Show older comments
clear all
clc;
r1=0.8; K1=8;c1=0.12; alpha1=0.505;alpha2=0.5;gamma=0.25;d1=0.2;
r2=0.5;c2=0.22; K2=8;k=1;beta=0.27;lambda=1.07;d=0.3;h=1.2;
f=r1*x(1)-(c1*(x(1))^2)/(k1+alpha1*x(2));
g=(r2*(x(2))^2)/(1+k*x(3))-(c2*(x(2))^2)/(k2+alpha2*x(1)*x(2))-(beta*(x(2))^2*x(3))/(beta*h*(x(2))^2+x(2)+gamma);...
h=(lamda*beta*(x(2))^2*x(3))/(beta*h*(x(2))^2+x(2)+gamma)-d*x(3)-d1*x(3)^2;
[x0 y0 z0] = meshgrid(0:0.01:310, 0:0.02:100, 0:0.02:30)
distance = sqrt((x - 306.33859).^2 + (y - 75.150076).^2 + (z -3.29535).^2);
error=0.001;
for i = 1:numel(x0)
x = x0(i);
y = y0(i);
z = z0(i);
if distance <error
basin(i)= 1;
end
end
[t, sol] = ode45(@(t, y) [f; g; h], [0, 1000], [x; y; z]);
3 Comments
Answers (1)
Sam Chak
on 5 Aug 2023
Edited: Sam Chak
on 5 Aug 2023
I'm unsure if the basin of attraction exists or not because a random sampling of the initial conditions in the ranges , , shows that the trajectories diverge to infinity as time t goes to some finite value. Could you perform a stability analysis on the system? The origin seems to be the equilibrium.
Update: Found a stable equilibrium near the center of this region. You should be able to find the basin of attraction.
opts = odeset('RelTol', 1e-4, 'AbsTol', 1e-6);
% initial condition
numP = 9;
x0 = linspace( 18.3, 28.3, numP);
y0 = linspace(-13.9, -3.9, numP);
z0 = linspace( 0.2, 10.2, numP);
[cx, cy, cz] = ndgrid(x0, y0, z0);
combs = [cx(:), cy(:), cz(:)];
for j = 1:length(combs)
[t, sol] = ode45(@odefcn, [0, 1056], combs(j, :), opts);
x = sol(:,1);
y = sol(:,2);
z = sol(:,3);
plot3(x, y, z, 'color', '#f99954'), hold on
end
grid on, xlabel('x'), ylabel('y'), zlabel('z')
axis square
axis([18 28 -14 -4 0 10])
% the system
function dxdt = odefcn(t, x)
r1 = 0.8;
k1 = 8;
c1 = 0.12;
alpha1 = 0.505;
alpha2 = 0.5;
gamma = 0.25;
d1 = 0.2;
r2 = 0.5;
c2 = 0.22;
k2 = 8;
k = 1;
beta = 0.27;
lambda = 1.07;
d = 0.3;
h = 1.2;
f = r1*x(1) - (c1*x(1)^2)/(k1 + alpha1*x(2));
g = (r2*x(2)^2)/(1 + k*x(3)) - (c2*x(2)^2)/(k2 + alpha2*x(1)*x(2)) - (beta*(x(2)^2)*x(3))/(beta*h*x(2)^2 + x(2) + gamma);
h = (lambda*beta*(x(2)^2)*x(3))/(beta*h*(x(2)^2) + x(2) + gamma) - d*x(3) - d1*x(3)^2;
dxdt = [f;
g;
h];
end
5 Comments
Sam Chak
on 6 Aug 2023
Can you click this button and insert your MATLAB code here? So that it can be tested when the Run button is clicked.
See Also
Categories
Find more on Particle & Nuclear Physics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!