non linear regression problem. fitnlm gives error

23 views (last 30 days)
Hello
I need to do curve fitting with 2 set of data and I know the model function and initial guess. I used "fitnlm " but it gives error.
would you please check my code and tell me whether I made a mistake or it is the nature of these data.
load FITDATAK
load FITDATAB
tb1= table (FITDATA1,FITDATA)
modelfun= @(b,x) b(1)*x(:,1)^b(2)
beta0= [0.22 -0.5]
md1= fitnlm(tb1,modelfun,beta)
it gives me this errors :
Error using nlinfit>checkFunVals
The function you provided as the MODELFUN input has returned Inf or NaN values.
Error in nlinfit>LMfit (line 596)
if funValCheck && ~isfinite(sse), checkFunVals(r); end
Error in nlinfit (line 284)
[beta,J,~,cause,fullr] = LMfit(X,yw, modelw,beta,options,verbose,maxiter);
Error in NonLinearModel/fitter (line 1153)
nlinfit(X,y,F,b0,opts,wtargs{:},errormodelargs{:});

Accepted Answer

Torsten
Torsten on 18 Jul 2023
Edited: Torsten on 18 Jul 2023
Look at the values of K and B. Do you really want to approximate B by a*K^b ?
format long
K = load("FITDATAK.mat");
K = K.FITDATA1
K = 526×1
1.0e+00 * 0.000000000165736 0.000000000146554 0.000000000138203 0.000000000104830 0.000000000067225 0.000000000053905 0.000000000043810 0.000000000022345 0.000000000019131 0.000000000009961
nnz(isnan(K))
ans =
0
nnz(isinf(K))
ans =
0
B = load("FITDATAB.mat");
B = B.FITDATA
B = 526×1
308500 439800 410200 749100 721800 900400 1072400 1304600 3641600 4397100
nnz(isnan(B))
ans =
0
nnz(isinf(B))
ans =
0
modelfun = @(b) b(1)*K.^b(2)-B;
beta0= [1e17 1];
sol = lsqnonlin(modelfun,beta0,[],[],optimset('MaxFunEvals',100000,'MaxIter',100000))
Local minimum possible. lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
sol = 1×2
1.0e+17 * 0.999999999999999 0.000000000000000
norm(modelfun(sol))
ans =
6.834566371856458e+10
  5 Comments
Torsten
Torsten on 18 Jul 2023
Edited: Torsten on 18 Jul 2023
My code from above gives the result of the linearized and the nonlinear problem in one plot.
The result for the nonlinear problem formulation looks far off, but remember that the plot is in loglog scale where the result of the linearized problem is the optimal one.

Sign in to comment.

More Answers (1)

Matt J
Matt J on 18 Jul 2023
Edited: Matt J on 18 Jul 2023
Your model function can easily generate NaN's and Infs because with fitnlm there is nothing to bound the b parameters (see below).. It would be better to use fit() with the 'power1' model, and with appropriate bounds on b(2).
load FITDATAK
modelfun= @(b,x) b(1)*x^b(2);
modelfun([1,-100],FITDATA1(50))
ans = Inf
modelfun([0,-100],FITDATA1(50))
ans = NaN

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!