error while solving the coupled ode
2 views (last 30 days)
Show older comments
Hello,
I have been trying to solve the following ode
but a "singular jacobian error" is recurring and is very sensitive to parameters. I think it's because of the guess function issue but I'm not very sure of it. I tried many guess functions but didn't seem to work. If there is any way out or suggestion to overshoot this error, please do help.
Thanks!
4 Comments
Accepted Answer
Torsten
on 21 Feb 2023
% Defining parameters
delta = 0.02; % Lower integral bound
R = 5; % Upper integral bound
theta = 0; % ArcTan(q/g)
maxPoints = 1e6; % Maximum numer of grid point used by bvpc4
initialPoints = 100; % Number of initial grid points used by bvpc4
tol = 1e-3; % Maximum allowed relative error.
L = 10;
N = 1;
n = 1;
m = 0;
g = 5;
lambda = 1;
% Boundary conditions
y0 = [0, -1, N*pi, 0];
% Initial conditions
A = @(r) (1-tanh(((L*r)/R)-(L/3)))/2;
dA = cosh(theta)*(coth(delta)-delta*csch(delta).^2);
F = @(r) (1+tanh(((L*r)/R)-(L/3)))/2;
dF = (1-delta*coth(delta))*csch(delta);
solinit = bvpinit(linspace(delta, R, initialPoints), [1 1 1 1]);
% Solves system using bvpc4
options = bvpset('RelTol', tol, 'NMax', maxPoints); % This function sets the allowed
%relative error and maximum number of grid points.
sol = bvp4c(@(r, y) heatGauge(r, y, lambda, g, m, n), @(ya, yb) bcheatGauge(ya, yb, y0),...
solinit, options);
r = linspace(delta, R, 1e4);
y = deval(sol, r);
plot(r,y(1,:),r, y(2,:))
grid on
function dy = heatGauge(r, y, lambda, g, m, n)
a = y(1);
f = y(2);
adot = y(3);
fdot = y(4);
atilde = n*(a+1.0)/r;
dy(1) = adot;
dy(2) = fdot;
dy(3) = a/r + g^2*(1+a)*(1+lambda^2*fdot^2)*sin(f)^2;
dy(4) = (-fdot/r*((2*n*adot-atilde)*lambda^2*atilde*sin(f)^2+lambda^2*r*fdot*atilde^2*sin(f)*cos(f)+1)...
+atilde^2*sin(f)*cos(f)+m^2*sin(f))/(1+lambda^2*atilde^2*sin(f)^2);
end
function res = bcheatGauge(ya, yb, y0)
res = [ya(1) - y0(1);yb(1) - y0(2);ya(2) - y0(3);yb(2) - y0(4)];
end
12 Comments
Torsten
on 24 Feb 2023
These equations look a lot better than the ones you posted first.
Did you try to solve them ?
More Answers (0)
See Also
Categories
Find more on Boundary Value Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!