How can we find the intersection between two planes in higher dimensions (4d space and above)?

11 views (last 30 days)
How can we find the intersection between two planes in higher dimensions (4d space and above)? For example we have the following 2 planes in 4d:
Plane 1
P1 =[252716585.970010 -136769230.769231 0 0];
P2 =[ -136769230.769231 252716585.970010 -136769230.769231 0];
P3= [0 -136769230.769231 252716585.970010 -136769230.769231];
P4 = [0 0 -136769230.769231 126358292.985005];
Plane 2
P11= [191269260.712188 -136769230.769231 0 0];
P22=[ -136769230.769231 259653876.096803 -136769230.769231 0];
P33= [0 -136769230.769231 259653876.096803 -136769230.769231];
P44=[0 0 -136769230.769231 129826938.048402];
  2 Comments
Jan
Jan on 6 Feb 2023
What are your inputs? Du you mean 2D planes in 4D space? 4 Points? 1 Point and 2 lines in the plane?
Matt J
Matt J on 6 Feb 2023
It is more compact to describe the planes in equation form Aeq*x=beq. For plane 1, this would be
P1 =[252716585.970010 -136769230.769231 0 0];
P2 =[ -136769230.769231 252716585.970010 -136769230.769231 0];
P3= [0 -136769230.769231 252716585.970010 -136769230.769231];
P4 = [0 0 -136769230.769231 126358292.985005];
Aeq=null([P2;P3;P4]-P1)'
Aeq = 1×4
0.2420 0.4472 0.5843 0.6325
beq=Aeq*P1'
beq = -3.2783e-07
and similarly for plane 2.

Sign in to comment.

Accepted Answer

Matt J
Matt J on 6 Feb 2023
Edited: Matt J on 6 Feb 2023
In general, intersections of two hyperplanes would be expressed algebraically by a 2xN set of linear equations Aeq*x=beq. A geometric description can be made in terms of an origin vector, which gives the position of some point in the intersection space, and a set of direction vectors which span the linear space parallel to it. Example:
Aeq=[1,2,3,4;
5,6,7,8];
beq=[5;7];
assert( rank([Aeq,beq])==rank(Aeq) , 'Hyperplanes do not intersect')
origin = pinv(Aeq)*beq
origin = 4×1
-1.0000 -0.2500 0.5000 1.2500
directions = null(Aeq)
directions = 4×2
-0.4001 -0.3741 0.2546 0.7970 0.6910 -0.4717 -0.5455 0.0488
  9 Comments
M
M on 17 Jun 2023
Hello @Matt J, could you please tell me based on what you programed these two lines in your code:
origin = pinv(Aeq)*beq
directions = null(Aeq)
Could you please elaborate them?
Thanks
Torsten
Torsten on 17 Jun 2023
Edited: Torsten on 17 Jun 2023
The complete set of solutions of a linear systems of equations (interpreted as the intersection of the hyperplanes) is given by one solution of the inhomogeneous system (origin) + the solutions of the homogeneous system (directions).
Read the last two paragraphs (Homogeneous solution set, Relation to nonhomogeneous systems) under

Sign in to comment.

More Answers (0)

Categories

Find more on Systems of Nonlinear Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!