Numerical answer to Partial derivative of Hopfield-style Energy in symbolic expression

2 views (last 30 days)
Hello,
I'm implementing a gradient descent optimizer that uses Hopfield-style energy as function,
the hopfield-style energy is a function of p:
The hopfield energy equation can also be expressed as:
The gradient vector is defined as:
I'm attempting to calculate the gradient vector using the Symbolic Toolbox as follows:
r_mat = sym('r',[4,4]);
r_mat = r_mat(:);
p_mat = sym('p',[4*4,1]);
c_mat = sym('c',[4*4,1]);
Energy = -0.5*p_mat'*r_mat*p_mat' - c_mat'*p_mat;
%the first partial derivative:
q1 = -1*diff(testi1,p_mat(1,1));
which yields as the first term:
conj(c1) + r1_1*conj(p1) + (r1_2*conj(p5))/2 + (r1_3*conj(p9))/2 + (r2_1*conj(p2))/2 + (r1_4*conj(p13))/2 + (r2_2*conj(p6))/2 + (r2_3*conj(p10))/2 + (r3_1*conj(p3))/2 + (r2_4*conj(p14))/2 + (r3_2*conj(p7))/2 + (r3_3*conj(p11))/2 + (r4_1*conj(p4))/2 + (r3_4*conj(p15))/2 + (r4_2*conj(p8))/2 + (r4_3*conj(p12))/2 + (r4_4*conj(p16))/2
How can I replace the symbols with numbers to yield the q vector? I need the q-vector for the gradient descent
the algorithm I'm implementing: https://doi.org/10.1117/1.JEI.23.1.013007 (relevant part starts at Equation 5)

Accepted Answer

Torsten
Torsten on 28 Jul 2022
Edited: Torsten on 28 Jul 2022
p is (4x1), not (16x1).
And keep r_mat as matrix, then
E = -0.5*p.'*r_mat*p - c.'*p
( r_mat can be assumed symmetric ).
By the way:
dE/dp = -r_mat*p - c
assuming r_mat is symmetric.
To replace symbols by numerical values, use "subs".
  5 Comments
Pseudoscientist
Pseudoscientist on 2 Aug 2022
It turned out symbolic expressions was extremely slow, I used symbolic to calculate the partial derivative and then used that to think how to write the equation in vector form and was evetually succesful and the optimizer is now very fast !
Torsten
Torsten on 2 Aug 2022
I used symbolic to calculate the partial derivative and then used that to think how to write the equation in vector form
That's the best you can do, I guess.

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!