sol = bvp4c (OdeBVP, OdeBC, solinit, options);

16 views (last 30 days)
ne the boundary conditions
function res = OdeBc (ya, yb, A, s, B, lambda)
global A s B lambda
res= [ya(1)-s;
ya(2)-lambda-A*ya(3);
ya(4)-1-B*ya(5);
yb(2);
yb(4)];
end
% setting the initial guess for first solution
function v = OdeInit1(x,A,s,lambda)
global A s lambda
v=[s+0.56
0
0
0
0];
end
% setting the initial guess for second solution
function v1 =OdeInit2(x, A, s)
global A s
v1 = [exp(-x)
exp(-x)
-exp(-x)
-exp(-x)
-exp(-x)];
end
end
  16 Comments
Waseef
Waseef on 7 Jun 2024
sorry sir for inconveniance, how i generate stream lines for this problem like in the image thank you.
Torsten
Torsten on 7 Jun 2024
In your code, η is between 0 and 15 instead of 0 and 1 and ξ is not defined.

Sign in to comment.

Accepted Answer

Torsten
Torsten on 31 May 2022
function slipflow
format long g
%Define all parameters
% Boundary layer thickness & stepsize
etaMin = 0;
etaMax1 = 15;
etaMax2 = 15; %15, 10
stepsize1 = etaMax1;
stepsize2 = etaMax2;
% Input for the parameters
A=0.6; %velocity slip
B=0.2; %thermal slip
beta=0.02; %heat gen/abs
S=2.4; %suction(2.3,2.4,2.5)
Pr=6.2; %prandtl number
lambda=-1; %stretching shrinking
a=0.01; %phil-1st nanoparticle concentration
b=0.01; %(0.01,0.05)phi2-2nd nanoparticle concentration
c=a+b; %phi-hnf concentration of hybrid nanoparticle
%%%%%%%%%%% 1st nanoparticle properties (Al2O3)%%%%%%%%%%%%
C1=765;
P1=3970;
K1=40;
B1=0.85/((10)^5);
s1=35*(10)^6; %MHD
%%%%%%%%%%% 2nd nanoparticle properties (Cu)%%%%%%%%%%%%
C2=385; %specific heat
P2=8933; %density
K2=400; %thermal conductivity
B2=1.67/((10)^5); %thermal expansion
s2=(59.6)*(10)^6; %MHD
%%%%%%%%%%% Base fluid properties %%%%%%%%%%%%
C3=4179; %specific heat
P3=997.1; %density
K3=0.613; %thermal conductivity
B3=21/((10)^5); %thermal expansion
s3=0.05; %MHD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%multiplier%%%%%%%%%%%%%%%%%%%
H1=P1*C1; %pho*cp nanoparticle 1
H2=P2*C2; %pho*cp nanoparticle 2
H3=P3*C3; %pho*cp base fluid
H4=a*H1+b*H2+(1-c)*H3; %pho*cp hybrid nanofluid
H5=a*P1+b*P2+(1-c)*P3; %pho hybrid nanofluid
H6=1/((1-c)^2.5); % mu hybrid nanofluid / mu base fluid
H7=a*(P1*B1)+b*(P2*B2)+(1-c)*(P3*B3); % thermal expansion of hybrid nanofluid
%Kn=K3*(K1+2*K3-2*a*(K3-K1))/(K1+2*K3+a*(K3-K1)); %thermal conductivity of nanofluid
Kh=(((a*K1+b*K2)/c)+2*K3+2*(a*K1+b*K2)-2*c*K3)/(((a*K1+b*K2)/c)+2*K3-(a*K1+b*K2)-2*c*K3); %khnf/kf
H8=(((a*s1+b*s2)/c)+2*s3+2*(a*s1+b*s2)-2*c*s3)/(((a*s1+b*s2)/c)+2*s3-(a*s1+b*s2)-2*c*s3); % \sigma hnf/ \sigma f
D1=(H5/P3)/H6;
D3=(H7/(P3*B3))/(H5/P3); % multiplier of boundary parameter
D2= Pr*((H4/H3)/Kh);
D4=H8/(H5/P3); %multiplier MHD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% First solution %%%%%%%%%%%%%%%%%%%
options = bvpset('stats','off','RelTol',1e-10);
solinit = bvpinit (linspace (etaMin, etaMax1, stepsize1),@(x)OdeInit1(x,A,S,lambda));
sol = bvp4c (@(x,y)OdeBVP(x,y,Pr,D1,Kh,H4,H3,beta), @(ya,yb)OdeBC(ya, yb, A, S, B, lambda), solinit, options);
eta = linspace (etaMin, etaMax1, stepsize1);
y= deval (sol,eta);
figure(1) %velocity profile
plot(sol.x,sol.y(2,:),'-')
xlabel('\eta')
ylabel('f`(\eta)')
hold on
figure(2) %temperature profile
plot(sol.x,sol.y(4,:),'-')
xlabel('\eta')
ylabel('\theta(\eta)')
hold on
% saving the out put in text file for first solution
descris =[sol.x; sol.y];
save 'sliphybrid_upper.txt' descris -ascii
% Displaying the output for first solution
fprintf('\n First solution:\n');
fprintf('f"(0)=%7.9f\n',y(3)); % reduced skin friction
fprintf('-theta(0)=%7.9f\n',-y(5)); %reduced local nusselt number
fprintf('Cfx=%7.9f\n',H6*(y(3))); % skin friction
fprintf('Nux=%7.9f\n',-Kh*y(5)); % local nusselt number
fprintf('\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% second solution %%%%%%%%%%%%%%%%%%%
options = bvpset('stats','off','RelTol',1e-10);
solinit = bvpinit (linspace (etaMin, etaMax2, stepsize2),@(x)OdeInit2(x,A,S,lambda));
sol = bvp4c (@(x,y)OdeBVP(x,y,Pr,D1,Kh,H4,H3,beta), @(ya,yb)OdeBC(ya, yb, A, S, B, lambda), solinit, options);
eta= linspace (etaMin, etaMax2, stepsize2);
y = deval (sol,eta);
figure(1) %velocity profile
plot(sol.x,sol.y(2,:),'--')
xlabel('\eta')
ylabel('f`(\eta)')
hold on
figure(2) %temperature profile
plot(sol.x,sol.y(4,:),'--')
xlabel('\eta')
ylabel('\theta(\eta)')
hold on
% saving the out put in text file for second solution
descris=[sol.x; sol.y];
save 'sliphybrid_lower.txt'descris -ascii
% Displaying the output for first solution
fprintf('\nSecond solution:\n');
fprintf('f"(0)=%7.9f\n',y(3)); % reduced skin friction
fprintf('-theta(0)=%7.9f\n',-y(5)); %reduced local nusselt number
fprintf('Cfx=%7.9f\n',H6*(y(3))); % skin friction
fprintf('Nux=%7.9f\n',-Kh*y(5)); % local nusselt number
fprintf('\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
% Define the ODE function
function f = OdeBVP(x,y,Pr,D1,Kh,H4,H3,beta)
f =[y(2);y(3);D1*(2*(y(2)*y(2))-y(1)*y(3));y(5);(Pr/Kh)*((-H4/H3)*(y(1)*y(5)-y(2)*y(4))-beta*y(4))];
end
% Define the boundary conditions
function res = OdeBc (ya, yb, A, S, B, lambda)
res= [ya(1)-S;ya(2)-lambda-A*ya(3);ya(4)-1-B*ya(5);yb(2);yb(4)];
end
% setting the initial guess for first solution
function v = OdeInit1(x,A,S,lambda)
v=[S+0.56;0;0;0;0];
end
% setting the initial guess for second solution
function v1 =OdeInit2(x, A, S,lambda)
v1 = [exp(-x);exp(-x);-exp(-x);-exp(-x);-exp(-x)];
end
  1 Comment
Torsten
Torsten on 31 May 2022
Edited: Torsten on 31 May 2022
Rename the function
OdeBc
in
OdeBC
For MATLAB, small and capital letters define different things.
Same with the letter "s" you used in your original code. I hope you always meant your "S" - I replaced it where it was needed.

Sign in to comment.

More Answers (2)

Farooq Aamir
Farooq Aamir on 1 Sep 2023
Edited: Torsten on 1 Sep 2023
This working now.
slipflow()
First solution: f"(0)=0.954395347 -theta(0)=3.658786212 Cfx=1.003836827 Nux=3.881552117
Second solution: f"(0)=0.075669302 -theta(0)=3.617987101 Cfx=0.079589273 Nux=3.838268944
function slipflow
format long g
%Define all parameters
% Boundary layer thickness & stepsize
etaMin = 0;
etaMax1 = 15;
etaMax2 = 15; %15, 10
stepsize1 = etaMax1;
stepsize2 = etaMax2;
% Input for the parameters
A=0.6; %velocity slip
B=0.2; %thermal slip
beta=0.02; %heat gen/abs
S=2.4; %suction(2.3,2.4,2.5)
Pr=6.2; %prandtl number
lambda=-1; %stretching shrinking
a=0.01; %phil-1st nanoparticle concentration
b=0.01; %(0.01,0.05)phi2-2nd nanoparticle concentration
c=a+b; %phi-hnf concentration of hybrid nanoparticle
%%%%%%%%%%% 1st nanoparticle properties (Al2O3)%%%%%%%%%%%%
C1=765;
P1=3970;
K1=40;
B1=0.85/((10)^5);
s1=35*(10)^6; %MHD
%%%%%%%%%%% 2nd nanoparticle properties (Cu)%%%%%%%%%%%%
C2=385; %specific heat
P2=8933; %density
K2=400; %thermal conductivity
B2=1.67/((10)^5); %thermal expansion
s2=(59.6)*(10)^6; %MHD
%%%%%%%%%%% Base fluid properties %%%%%%%%%%%%
C3=4179; %specific heat
P3=997.1; %density
K3=0.613; %thermal conductivity
B3=21/((10)^5); %thermal expansion
s3=0.05; %MHD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%multiplier%%%%%%%%%%%%%%%%%%%
H1=P1*C1; %pho*cp nanoparticle 1
H2=P2*C2; %pho*cp nanoparticle 2
H3=P3*C3; %pho*cp base fluid
H4=a*H1+b*H2+(1-c)*H3; %pho*cp hybrid nanofluid
H5=a*P1+b*P2+(1-c)*P3; %pho hybrid nanofluid
H6=1/((1-c)^2.5); % mu hybrid nanofluid / mu base fluid
H7=a*(P1*B1)+b*(P2*B2)+(1-c)*(P3*B3); % thermal expansion of hybrid nanofluid
%Kn=K3*(K1+2*K3-2*a*(K3-K1))/(K1+2*K3+a*(K3-K1)); %thermal conductivity of nanofluid
Kh=(((a*K1+b*K2)/c)+2*K3+2*(a*K1+b*K2)-2*c*K3)/(((a*K1+b*K2)/c)+2*K3-(a*K1+b*K2)-2*c*K3); %khnf/kf
H8=(((a*s1+b*s2)/c)+2*s3+2*(a*s1+b*s2)-2*c*s3)/(((a*s1+b*s2)/c)+2*s3-(a*s1+b*s2)-2*c*s3); % \sigma hnf/ \sigma f
D1=(H5/P3)/H6;
D3=(H7/(P3*B3))/(H5/P3); % multiplier of boundary parameter
D2= Pr*((H4/H3)/Kh);
D4=H8/(H5/P3); %multiplier MHD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% First solution %%%%%%%%%%%%%%%%%%%
options = bvpset('stats','off','RelTol',1e-10);
solinit = bvpinit (linspace (etaMin, etaMax1, stepsize1),@(x)OdeInit1(x,A,S,lambda));
sol = bvp4c (@(x,y)OdeBVP(x,y,Pr,D1,Kh,H4,H3,beta), @(ya,yb)OdeBc(ya, yb, A, S, B, lambda), solinit, options);
eta = linspace (etaMin, etaMax1, stepsize1);
y= deval (sol,eta);
figure(1) %velocity profile
plot(sol.x,sol.y(2,:),'-')
xlabel('\eta')
ylabel('f`(\eta)')
hold on
figure(2) %temperature profile
plot(sol.x,sol.y(4,:),'-')
xlabel('\eta')
ylabel('\theta(\eta)')
hold on
% saving the out put in text file for first solution
descris =[sol.x; sol.y];
%save 'sliphybrid_upper.txt' descris -ascii
% Displaying the output for first solution
fprintf('\n First solution:\n');
fprintf('f"(0)=%7.9f\n',y(3)); % reduced skin friction
fprintf('-theta(0)=%7.9f\n',-y(5)); %reduced local nusselt number
fprintf('Cfx=%7.9f\n',H6*(y(3))); % skin friction
fprintf('Nux=%7.9f\n',-Kh*y(5)); % local nusselt number
fprintf('\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% second solution %%%%%%%%%%%%%%%%%%%
options = bvpset('stats','off','RelTol',1e-10);
solinit = bvpinit (linspace (etaMin, etaMax2, stepsize2),@(x)OdeInit2(x,A,S,lambda));
sol = bvp4c (@(x,y)OdeBVP(x,y,Pr,D1,Kh,H4,H3,beta), @(ya,yb)OdeBc(ya, yb, A, S, B, lambda), solinit, options);
eta= linspace (etaMin, etaMax2, stepsize2);
y = deval (sol,eta);
figure(1) %velocity profile
plot(sol.x,sol.y(2,:),'--')
xlabel('\eta')
ylabel('f`(\eta)')
hold on
figure(2) %temperature profile
plot(sol.x,sol.y(4,:),'--')
xlabel('\eta')
ylabel('\theta(\eta)')
hold on
% saving the out put in text file for second solution
descris=[sol.x; sol.y];
%save 'sliphybrid_lower.txt'descris -ascii
% Displaying the output for first solution
fprintf('\nSecond solution:\n');
fprintf('f"(0)=%7.9f\n',y(3)); % reduced skin friction
fprintf('-theta(0)=%7.9f\n',-y(5)); %reduced local nusselt number
fprintf('Cfx=%7.9f\n',H6*(y(3))); % skin friction
fprintf('Nux=%7.9f\n',-Kh*y(5)); % local nusselt number
fprintf('\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
% Define the ODE function
function f = OdeBVP(x,y,Pr,D1,Kh,H4,H3,beta)
f =[y(2);y(3);D1*(2*(y(2)*y(2))-y(1)*y(3));y(5);(Pr/Kh)*((-H4/H3)*(y(1)*y(5)-y(2)*y(4))-beta*y(4))];
end
% Define the boundary conditions
function res = OdeBc(ya, yb, A, S, B, lambda)
res= [ya(1)-S;ya(2)-lambda-A*ya(3);ya(4)-1-B*ya(5);yb(2);yb(4)];
end
% setting the initial guess for first solution
function v = OdeInit1(x,A,S,lambda)
v=[S+0.56;0;0;0;0];
end
% setting the initial guess for second solution
function v1 =OdeInit2(x, A, S,lambda)
v1 = [exp(-x);exp(-x);-exp(-x);-exp(-x);-exp(-x)];
end
  9 Comments
Ramanuja
Ramanuja on 25 Mar 2024
Thanks Farooq Aamir sir,
Thanks Farooq Aamir sir,
Thanks Farooq Aamir sir,
Yasir
Yasir on 27 Jun 2024
Hello sir, What changes should i make in the code to plot the graphs of skin friction,Nusselt number and sherword number.
how can i get the different [oints to plot them

Sign in to comment.


Waseef
Waseef on 30 Jun 2024
Edited: Walter Roberson on 4 Jul 2024
sir how i define entropy in this code
this the entropy "NN=y(6)*y(6))+C1*y(7)+D*(y(5)*y(5)+y(2)*y(2))+E*(y(1)*y(8)+y(4)*y(8))"
and this is the code
Skinforbydirectional()
f"(0)=-1.145548435 g"(0)=-0.114554844 -theta(0)=1.029922860
function Skinforbydirectional
format long g
% Boundary layer thickness & stepsize
global A Pr aa pm Phi R M pm Q sigmaf sigmas sigmanf n ks kf Rhos Rhof
global Cps Cpf tt kk Ec spn phi1 phi5 phi2 Lambda A B C st A2 A3 A4 A5 A6 total
etaMin = 0;
etaMax = 10;
stepsize = etaMax;%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Define all parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Phi=0.04; %input ('Input the value of phi = ');
R =0.2; %input ('Input the value of Radiation = ');
M= 0.01; %input('magentic parameter M =');
pm=0.2; %input('porosity =');
Q=0.2; %input('Heat sourse parameter');
%alpha=0.3;
aa=0.5;
%n=3; %input ('Input the value of n = ');
Ec =0; %input ('Input Eckret for velociy exponent parameter = ');
Pr = 6.8; % input ('Input the Prandtl number = ');
st=0.1;
%aa=10;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sigmaf=0.05; sigmas=1000000;
Ks= 400; Kf= 0.613;
Rhos= 8933; Rhof= 997.1;Cps= 385; Cpf= 4179; tt=Rhos*Cps;
kk=Rhof*Cpf;
spn=(3*Phi*((sigmas/sigmaf)-1))/(((sigmas/sigmaf)+2)-((sigmas/sigmaf)-1)*Phi);
sigmanf=sigmaf*(1+spn);
% Lambda = 1:1:10;
%for ii = 1:numel(Lambda) %stretching shrinking
% aa = Lambda(ii);
total=(sigmas/sigmaf);
phi3=1+(3*(total-1)*Phi/((total+2)-(total-1)*Phi));
%phi4=(ks+(n-1)*kf+(n-1)*(ks-kf)*Phi)/(ks+(n-1)*kf+(kf-ks)*Phi);
phi4=((1-Phi)+2*Phi*Ks/(Ks-Kf)*log((Ks+Kf)/2*Kf))/((1-Phi)+2*Phi*Kf/(Ks-Kf)*log((Ks+Kf)/2*Kf));
%phi5=1-Phi+Phi*(Cps/Cpf);
phi1=(1-Phi)^2.5;
phi2=1-Phi+Phi*(Rhos/Rhof);
phi5=1-Phi+Phi*(tt/kk);
A = ((phi1 * M * (sigmanf / sigmaf)) + pm) * (2 / (aa + 1));
B = phi1 * phi2 * (2 * aa / (aa + 1));
C = phi1 * phi2;
A1 = phi4 + R;
B1 = Ec * Pr / phi1;
C1 = Pr * Q * (2 / (aa + 1));
E = Pr * phi5;
D = Pr * Ec * M * (sigmanf / sigmaf) * (2 / (aa + 1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% First solution %%%%%%%%%%%%%%%%%%%
options = bvpset('stats','off','RelTol',1e-10);
solinit = bvpinit (linspace (etaMin, etaMax, stepsize),@(x)OdeInit1);
sol=bvp4c(@OdeBVP, @OdeBC, solinit);
%sol = bvp5c (@(x,y)OdeBVP(x,y,Pr,D1,Kh,H4,H3,beta), @(ya,yb)OdeBc(ya, yb, A, S, B, lambda), solinit, options);
eta = linspace (etaMin, etaMax, stepsize);
y= deval (sol,eta);
% To_Plot1(ii) = (1/phi1)*(sqrt(2*(aa+1)))*sol.y(5,1);
% To_Plot2(ii) = -(phi4+R)*(sqrt((aa+1)/2))*sol.y(8,1);
% fprintf('y(3) at etaMax = %f\n', y(3, end));
% fprintf('y(8) at etaMax = %f\n', y(8, end));
%end
figure(1) %velocity profile
plot(sol.x,sol.y(2,:),'-')
xlabel('\eta')
ylabel('f`(\eta)')
hold on
figure(2) %velocity profile
plot(sol.x,sol.y(5,:),'-')
xlabel('\eta')
ylabel('q`(\eta)')
hold on
% figure(3) %velocity profile
% plot(Lambda,To_Plot1,'LineWidth',2)
% xlabel('a')
% ylabel('f^\prime^\prime(0)')
% grid on
% hold on
% figure(4) %temperature profile
% hold on
% grid on
% plot(Lambda,To_Plot2,'LineWidth',2)
% xlabel('a')
% ylabel('\theta^\prime(0)')
% %xlim([0 2])
% figure(1) %velocity profile
% plot(Lambda,To_Plot1,'-')
% xlabel('\lambda')
% ylabel('f^\prime^\prime(0)')
% xlim([1,2])
% figure(2) %temperature profile
% plot(Lambda,To_Plot2,'-')
% xlabel('\lambda')
% ylabel('\theta^\prime(0)')
% xlim([1 2])
% Define the ODE function
fprintf('f"(0)=%7.9f\n',y(3)); % reduced skin friction
fprintf('g"(0)=%7.9f\n',y(6)); % reduced skin friction
fprintf('-theta(0)=%7.9f\n',-y(8)); %reduced local nusselt number
function f = OdeBVP(~,y)
f =[ y(2); y(3);A*y(2)+B*(y(2)*y(2)+y(5)*y(2))-C*(y(1)*y(3)+y(4)*y(3));
y(5);y(6); A*y(5)+B*(y(5)*y(2)+y(5)*y(5))-C*(y(1)*y(6)+y(4)*y(6));
y(8);(-1/A1)*(B1*(y(3)*y(3)+y(6)*y(6))+C1*y(7)+D*(y(5)*y(5)+y(2)*y(2))+E*(y(1)*y(8)+y(4)*y(8)))];
end
% Define the boundary conditions
function res = OdeBC(ya, yb)
res= [ya(1);
ya(2)-1;
ya(4);
ya(5)-st;
ya(7)-1;
yb(2);
yb(5);
yb(7)];
end
% setting the initial guess for first solution
function v = OdeInit1(~)
v=[0.9
0.1
0.1
-0.1
0.1
0
-0.1
01];
end
end

Categories

Find more on Real-Time Simulation in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!