How to solve coupled odes with two time dependent variables with ode45?
30 views (last 30 days)
Show older comments
I am having two coupled odes in which there are two dependent variables are present. I tried solving them with the below but I am getting error. Can someone help me in solving the below equations?
%% equations which I need to solve are:
%% dc/dt = -((1-eps)*rhop/eps)*(dq/dt);
%% dq/dt = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n)) - q);
eps = 0.43;
rhop = 1228.5;
qm = 5.09;
R = 8.314;
T = 301;
Kl = 0.226;
n = 0.429;
K0 = 4.31e-9; % in pascal-1
delh = -29380; % heat of adsorption in j/mol
Keq = K0*exp(-delh/(R*T));
t = 0:1:100;
y0= zeros(2,1);
[tsol,ysol] = ode45(@(t,y) odfun(t,y), t, y0);
plot(tsol,ysol(:,1))
function dy = odfun(t,y,Kl,qm,Keq,R,T,n,rhop,eps)
c = y(1);
q = y(2);
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
dy(2) = -((1-eps)*rhop/eps)*dy(1);
end
The error which I am getting when I am running this code is as follows:
Not enough input arguments.
Error in odcase>odfun (line 21)
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
Error in odcase>@(t,y)odfun(t,y) (line 14)
[tsol,ysol] = ode45(@(t,y) odfun(t,y), t, y0);
Error in odearguments (line 90)
f0 = feval(ode,t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
Error in odcase (line 14)
[tsol,ysol] = ode45(@(t,y) odfun(t,y), t, y0);
Someone please let me know what are the mistakes in my code.
0 Comments
Accepted Answer
Torsten
on 31 May 2022
Edited: Torsten
on 31 May 2022
function dy = odfun(t,y,Kl,qm,Keq,R,T,n,rhop,eps)
q = y(1);
c = y(2);
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
dy(2) = -((1-eps)*rhop/eps)*dy(1);
end
instead of
function dy = odfun(t,y,Kl,qm,Keq,R,T,n,rhop,eps)
c = y(1);
q = y(2);
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
dy(2) = -((1-eps)*rhop/eps)*dy(1);
end
0 Comments
More Answers (1)
Sam Chak
on 31 May 2022
Not sure what went wrong and why it is unstable. If you are absolutely sure that the absorption dynamics is stable (converging to a steady-state value), then the ODEs must be incorrect. Please check all parameters and the signs. Sometimes, a single change of sign can make a huge difference. For example, as a test, I simply added a minus sign '–' in front of K1 on the right-hand side of dydt(1), and the system becomes stable.
Please countercheck the ODEs against various textbooks and journal papers. If you only rely on a single reference and there is a misprint, then you know what happens...
function dydt = odefcn(t, y)
dydt = zeros(2,1);
ep = 0.43;
rhop = 1228.5;
qm = 5.09;
R = 8.314;
T = 301;
Kl = 0.226;
n = 0.429;
K0 = 4.31e-9; % in pascal-1
delh = -29380; % heat of adsorption in j/mol
Keq = K0*exp(-delh/(R*T));
c = y(1);
q = y(2);
dydt(1) = -Kl*( ( qm*Keq*c*R*T/(1 + (Keq*c*R*T)^n)^(1/n) ) - q );
dydt(2) = -((1 - ep)*rhop/ep)*dydt(1);
end
tspan = [0 0.1];
init = [1; 0];
[t, y] = ode45(@odefcn, tspan, init);
plot(t, y(:, 1), 'linewidth', 1.5)
3 Comments
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!