How to solve matrix in characteristic equation?
8 views (last 30 days)
Show older comments
Given the system matrix A=[0 1 0 0;3 0 0 2; 0 0 0 1; 0 -2 0 0] and B=[0 0;1 0;0 0;0 1], From the characteristic equation det(A-BF) the eigenvalues{-1,-3,-5,-8} are found. How do I reverse the process to find the gain F?
5 Comments
Accepted Answer
Sam Chak
on 9 May 2022
Hi @Tianyi Chai
This is actually very easy if you know algebra and solving simultaneous equations on the desired characteristic equation (from the eigenvalues) and the actual characteristic equation found from . The fancy name for this method is called Pole Placement:
A = [0 1 0 0; 3 0 0 2; 0 0 0 1; 0 -2 0 0] % state matrix
B = [0 0; 1 0; 0 0; 0 1] % input matrix
p = [-1 -3 -5 -8] % desired poles
F = place(A, B, p) % Pole placement design to calculate the control gain matrix F
% check the result
eig(A-B*F)
For more info, please check:
0 Comments
More Answers (0)
See Also
Categories
Find more on Linear Algebra in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!