Solving a non linear ODE with unknown parameter
4 views (last 30 days)
Show older comments
khaoula Oueslati
on 14 Apr 2022
Commented: khaoula Oueslati
on 19 Apr 2022
Hello ! I am working on solving an ODE equation with an unknown kinetic parameter A. I have been using python and deep learning to solve the equation and also determine the value of A , however the loss function is always in the order of 10**4 and the paramter A is wrong , I tried with different hyperparamters but it´s not working. this is the ODE equation : dDP/dt=-k1*([DP]^2) and k1=k= Ae^(1/R(-E/(T+273))) , A is in the order of 10**8, I have DP(t) data.
I am stuck and I would like to know what´s the best way to solve this using matlab ? or is there any examples similar to my problem ?
Any help is highly appreciated !
0 Comments
Accepted Answer
Torsten
on 19 Apr 2022
Edited: Torsten
on 19 Apr 2022
%time points
ts=[1 2 3 4 5 6 7 8];
DP=[1000 700.32 580.42 408.20 317.38 281.18 198.15 100.12];
p0 = 1e1;
p = fminunc(@(p)fun(p,ts,DP),p0)
E = 111e3;
R = 8.314;
T = 371;
A = p*exp(E/(R*T))
plot(ts,DP)
hold on
plot(ts,1./(1/DP(1)+ A*exp(-E/(R*T))*(ts-ts(1))));
function obj = fun(p,ts,DP)
DP_model = 1./(1/DP(1)+ p*(ts-ts(1)));
obj = sum((DP-DP_model).^2)
end
6 Comments
Torsten
on 19 Apr 2022
the loss value is :loss value is 0.35787 and A value is 1.08e10 and the ground_truth A value is 7.8e8
I am not sure the source of this mismatch.
I don't know either. Maybe T or E were different. The fit at least is perfect.
btw , how did you find the DP_model expression ? is it some appoximation ? or after integration we get that expression of the solution ?
If you don't trust in my pencil-and-paper solution, here is MATLAB code to solve the differential equation:
syms Dp(t) k1 t0 Dp0
eqn = diff(Dp,t) == -k1*Dp^2;
cond = Dp(t0) == Dp0;
DpSol(t) = dsolve(eqn,cond)
More Answers (3)
Torsten
on 14 Apr 2022
Your ODE for D_p gives
D_p = 1/(1/D_p0 + k1*(t-t0))
where D_p0 = D_p(t0).
Now you can apply "lsqcurvefit" to fit the unknown parameter A.
2 Comments
Sam Chak
on 14 Apr 2022
Edited: Sam Chak
on 14 Apr 2022
This governing equations are given and you have acquired the data.
The objective is want to find A.
From the data, you can possibly estimate for . Next, can be determined from the differential equation:
Now, if R, E and T are known, then can be determined from the algebraic equation:
Please verify this.
If the data is uniformly distributed, then you can use this method to estimate .
t = -pi:(2*pi/100):pi;
x = sin(t); % assume Dp is a sine wave
y = gradient(x)/(2*pi/100); % estimate dotDp, a cosine wave is expected
plot(t, x, 'linewidth', 1.5, t, y, 'linewidth', 1.5)
grid on
xlabel('t')
ylabel('x(t) and x''(t)')
legend('x(t) = sin(t)', 'x''(t) = cos(t)', 'location', 'northwest')
David Willingham
on 14 Apr 2022
Hi,
Have you seen this example for solving ODE's using Deep Learning in MATLAB?
See Also
Categories
Find more on Quadratic Programming and Cone Programming in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!