Minimize a function using gradient descent

84 views (last 30 days)
How can we minimise the following function using gradient descent (using a for loop for iterations and a surface plot to display a graph that shows the minimisation)
% initial values: x = y = 2
z = 2*(x^2) + 3*(y^2);

Accepted Answer

Torsten
Torsten on 11 Apr 2022
Edited: Torsten on 11 Apr 2022
X = -2:0.1:2;
Y = -2:0.1:2;
[X,Y] = meshgrid(X,Y);
Z = 2*X.^2+3*Y.^2;
surf(X,Y,Z)
hold on
x(1) = 2; % initial value of x
y(1) = 2; % initial value of y
z(1) = 2.*x(1).^2 + 3.*y(1).^2;
stepsize = 0.1;
for i = 1:30
zx = 4*x(i);
zy = 6*y(i);
x(i+1) = x(i) - stepsize*zx; %gradient descent
y(i+1) = y(i) - stepsize*zy;
z(i+1) = 2.*x(i+1).^2 + 3.*y(i+1).^2
end
plot3(x,y,z,'Markersize',10,'Color','red')
hold off

More Answers (1)

Sam Chak
Sam Chak on 11 Apr 2022
Edited: Sam Chak on 11 Apr 2022
Let us visualize and formulate the minimization problem first. So you want to start descending from the point , circled in the image. The contour plot can give you an estimation where you are heading to from the starting point.
f = @(x,y) 2*(x.^2) + 3*(y.^2);
[x,y] = meshgrid(-2.5:0.25:2.5, -2.5:0.25:2.5);
z = f(x, y);
[fx, fy] = gradient(z, 0.25);
cs = contour(x, y, z);
axis square
clabel(cs);
hold on
plot(2, 2, 'ro', 'linewidth', 1.5)
quiver(x, y, -fx, -fy);
hold off
xlabel('x')
ylabel('y')
We try to first obtain the solution with the fminsearch() function. Then, we can write the gradient descent algorithm to compare with the result.
fun = @(x) 2*(x(1).^2) + 3*(x(2).^2);
[x, fval] = fminsearch(fun, [2, 2])
x =
1.0e-04 *
0.0707 -0.3490
fval =
3.7533e-09
Surface plot with the mesh() function:
[x, y] = meshgrid(-3:0.375:3);
z = 2*(x.^2) + 3*(y.^2);
[u, v] = gradient(z, 0.375);
w = 1;
magnitude = sqrt(u.*u + v.*v + w.*w);
u = u./magnitude;
v = v./magnitude;
w = w./magnitude;
mesh(x, y, z)
axis square
xlabel('x');
ylabel('y');
zlabel('z');
hold on
quiver3(x, y, z, -0.75*u, -0.75*v, w, 0)
hold off

Categories

Find more on Networks in Help Center and File Exchange

Products


Release

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!