Main Content

bessely

Bessel function of second kind

Description

example

Y = bessely(nu,Z) computes the Bessel function of the second kind Yν(z) for each element in array Z.

example

Y = bessely(nu,Z,scale) specifies whether to exponentially scale the Bessel function of the second kind to avoid overflow or loss of accuracy. If scale is 1, then the output of bessely is scaled by the factor exp(-abs(imag(Z))).

Examples

collapse all

Define the domain.

z = 0:0.1:20;

Calculate the first five Bessel functions of the second kind. Each row of Y contains the values of one order of the function evaluated at the points in z.

Y = zeros(5,201);
for i = 0:4
    Y(i+1,:) = bessely(i,z);
end

Plot all of the functions in the same figure.

plot(z,Y)
axis([-0.1 20.2 -2 0.6])
grid on
legend('Y_0','Y_1','Y_2','Y_3','Y_4','Location','Best')
title('Bessel Functions of the Second Kind for $\nu \in [0, 4]$','interpreter','latex')
xlabel('z','interpreter','latex')
ylabel('$Y_\nu(z)$','interpreter','latex')

Calculate the unscaled (Y) and scaled (Ys) Bessel function of the second kind Y2(z) for complex values of z.

x = -10:0.35:10;
y = x';
z = x + 1i*y;
scale = 1;
Y = bessely(2,z);
Ys = bessely(2,z,scale);

Compare the plots of the imaginary part of the scaled and unscaled functions. For large values of abs(imag(z)), the unscaled function quickly overflows the limits of double precision and stops being computable. The scaled function removes this dominant exponential behavior from the calculation and thus has a larger range of computability compared to the unscaled function.

surf(x,y,imag(Y))
title('Bessel Function of the Second Kind','interpreter','latex')
xlabel('real(z)','interpreter','latex')
ylabel('imag(z)','interpreter','latex')

surf(x,y,imag(Ys))
title('Scaled Bessel Function of the Second Kind','interpreter','latex')
xlabel('real(z)','interpreter','latex')
ylabel('imag(z)','interpreter','latex')

Input Arguments

collapse all

Equation order, specified as a scalar, vector, matrix, or multidimensional array. nu is a real number that specifies the order of the Bessel function of the second kind. nu and Z must be the same size, or one of them can be scalar.

Example: bessely(3,0:5)

Data Types: single | double

Functional domain, specified as a scalar, vector, matrix, or multidimensional array. bessely is real-valued where Z is positive. nu and Z must be the same size, or one of them can be scalar.

Example: bessely(1,[1-1i 1+0i 1+1i])

Data Types: single | double
Complex Number Support: Yes

Toggle to scale function, specified as one of these values:

  • 0 (default) — No scaling

  • 1 — Scale the output of bessely by exp(-abs(imag(Z)))

On the complex plane, the magnitude of bessely grows rapidly as the value of abs(imag(Z)) increases, so exponentially scaling the output is useful for large values of abs(imag(Z)) where the results otherwise quickly lose accuracy or overflow the limits of double precision.

Example: bessely(3,0:5,1)

More About

collapse all

Bessel Functions

This differential equation, where ν is a real constant, is called Bessel's equation:

z2d2ydz2+zdydz+(z2ν2)y=0.

Its solutions are known as Bessel functions.

The Bessel functions of the first kind, denoted Jν(z) and Jν(z), form a fundamental set of solutions of Bessel's equation for noninteger ν. Jν(z) is defined by

Jν(z)=(z2)ν(k=0)(z24)kk!Γ(ν+k+1).

You can calculate Bessel functions of the first kind using besselj.

The Bessel functions of the second kind, denoted Yν(z), form a second solution of Bessel's equation that is linearly independent of Jν(z). Yν(z) is defined by

Yν(z)=Jν(z)cos(νπ)Jν(z)sin(νπ).

Tips

The Bessel functions are related to the Hankel functions, also called Bessel functions of the third kind:

Hν(1)(z)=Jν(z)+iYν(z)Hν(2)(z)=Jν(z)iYν(z).

Hν(K)(z) is besselh, Jν(z) is besselj, and Yν(z) is bessely. The Hankel functions also form a fundamental set of solutions to Bessel's equation (see besselh).

Extended Capabilities

Introduced before R2006a