translatecov
Translate parameter covariance across model transformation operations
Syntax
sys_new = translatecov(fcn,sys)
sys_new = translatecov(fcn,Input1,...,InputN)
Description
transforms sys_new
= translatecov(fcn
,sys
)sys
into sys_new
= fcn(sys)
, and translates the parameter covariance of sys
to
the parameter covariance of the transformed model. fcn
is
a transformation function that you specify. The command computes the
parameter covariance of sys_new
by applying the
Gauss Approximation formula. To view the translated parameter covariance,
use getcov
.
Applying model transformations directly does not always translate
the parameter covariance of the original model to that of the transformed
model. For example, d2c(sys)
does not translate
the parameter covariance of sys
. In contrast, translatecov(@(x)d2c(x),sys)
produces
a transformed model that has the same coefficients as d2c(sys)
and
has the translated parameter covariance of sys
.
returns
the model sys_new
= translatecov(fcn
,Input1,...,InputN
)sys_new = fcn(Input1,...,InputN)
and
its parameter covariance. At least one of the N
inputs
must be a linear model with parameter covariance information.
Input Arguments
|
Model transformation function, specified as a function handle. For single-input functions, For multi-input functions, |
|
Linear model with parameter covariance information, specified as one of the following model types: The model must contain parameter covariance information, that
is |
|
Multiple input arguments to the translation function |
Output Arguments
|
Model resulting from transformation operation. The model includes parameter covariance information. |
Examples
Tips
If you obtained
sys
through estimation and have access to the estimation data, you can use zero-iteration update to recompute the parameter covariance. For example:load iddata1 m = ssest(z1,4); opt = ssestOptions opt.SearchOptions.MaxIterations = 0; m_new = ssest(z1,m2,opt)
You cannot run a zero-iteration update in the following cases:
If
MaxIterations
option, which depends on theSearchMethod
option, is not available.For some model and data types. For example, a continuous-time
idpoly
model using time-domain data.
Algorithms
translatecov
uses numerical perturbations
of individual parameters of sys
to compute the
Jacobian of fcn(sys)
parameters with respect to
parameters of sys
. translatecov
then
applies Gauss Approximation formula to
translate the covariance, where J
is the Jacobian
matrix. This operation can be slow for models containing a large number
of free parameters.
Version History
Introduced in R2012b