IRTree
Create IRTree
pricer object for Cap
,
Floor
, Swap
, Swaption
,
FloatBond
, FixedBond
,
FixedBondOption
, FloatBondOption
,
OptionEmbeddedFixedBond
, or
OptionEmbeddedFloatBond
instrument
Since R2020a
Description
Create and price a Cap
, Floor
,
Swap
, Swaption
, FloatBond
,
FixedBond
, FixedBondOption
,
FloatBondOption
, OptionEmbeddedFixedBond
, or
OptionEmbeddedFloatBond
instrument object with a
HullWhite
or BlackKarasinski
model and an
IRTree
pricing method using this workflow:
Use
fininstrument
to create aCap
,Floor
,Swaption
,Swap
,FloatBond
,FixedBond
,FixedBondOption
,FloatBondOption
,OptionEmbeddedFixedBond
, orOptionEmbeddedFloatBond
instrument object.Use
finmodel
to specify aHullWhite
,BlackKarasinski
, orBlackDermanToy
model for theCap
,Floor
,Swaption
,Swap
,FixedBond
,FloatBond
,FixedBondOption
,FloatBondOption
,OptionEmbeddedFixedBond
, orOptionEmbeddedFloatBond
instrument object.Use
finpricer
to specify anIRTree
pricer object for a BK, BDT, or HW trinomial tree model for theCap
,Floor
,Swaption
,Swap
,FixedBond
,FloatBond
,FixedBondOption
,FloatBondOption
,OptionEmbeddedFixedBond
, orOptionEmbeddedFloatBond
instrument object.
For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available instruments, models, and pricing methods for a
Cap
, Floor
, Swaption
,
Swap
, FixedBond
, FloatBond
,
FloatBondOption
, OptionEmbeddedFixedBond
, or
OptionEmbeddedFloatBond
instrument, see Choose Instruments, Models, and Pricers.
Creation
Description
creates a IRTreePricerObj
= finpricer(PricerType
,'Model
',model_type,'DiscountCurve
',ratecurve_obj,'TreeDates
',tree_dates)IRTree
pricer object by specifying
PricerType
and the required name-value pair
arguments for Model
,
DiscountCurve
, and TreeDates
to
set properties using name-value
pair arguments. For example, IRTreePricerObj =
finpricer("IRTree",'Model',HullWhite,'DiscountCurve',ratecure_obj,'TreeDates',['jan-30-2018';'jan-30-2019'])
creates an IRTree
pricer object.
Input Arguments
PricerType
— Pricer type
string with value "IRTree"
| character vector with value 'IRTree'
Pricer type, specified as a string with the value of
"IRTree"
or a character vector with the value of
'IRTree'
.
Data Types: char
| string
Specify required
pairs of arguments as Name1=Value1,...,NameN=ValueN
, where
Name
is the argument name and Value
is
the corresponding value. Name-value arguments must appear after other arguments,
but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: IRTreePricerObj =
finpricer("IRTree",'Model',HullWhite,'DiscountCurve',ratecure_obj,'TreeDates',['jan-30-2018';'jan-30-2019'])
Model
— Model type
HullWhite
object | BlackKarasinski
object | BlackDermanToy
object
Model type, specified as the comma-separated pair consisting of
'Model'
and the name of a previously created
HullWhite
, BlackKarasinski
, or BlackDermanToy
model object. Create the model object
using finmodel
.
Note
When you use a HullWhite
model, the
IRTree
pricer uses the HW2000
algorithm [1].
Data Types: object
DiscountCurve
— ratecurve
object for creating IRTree
and discounting cash flows
ratecurve
object
This property is read-only.
ratecurve
object for creating
IRTree
and discounting cash flows, specified
as the comma-separated pair consisting of
'DiscountCurve'
and the name of a ratecurve
object.
Data Types: object
TreeDates
— Dates marking the cash flow dates of the tree
vector
Dates marking the cash flow dates of the tree, specified as the
comma-separated pair consisting of 'TreeDates'
and an NLEVELS
-by-1
vector of
dates. Cash flows with these dates will fall on tree nodes. The
TreeDates
argument determines the number of
levels, or depth, of the tree. List dates in increasing
order.
Data Types: double
| cell
| datetime
Properties
Tree
— HW or BK trinomial tree
struct for HW or BK tree
HW or BK trinomial tree, returned as a struct with the following properties:
tObs
contains the time factor of each level of the tree.dObs
contains the date of each level of the tree.Probs
contains a cell array of3
-by-N
numeric arrays with the up, mid, down probabilities of each node of the tree except for the last level. The cells in the cell array are ordered from root node. The arrays are3
-by-N
with the first row corresponding to an up move, the mid row to a mid-move, and so on. Each column of the array represents a node starting from the top node of a given level.CFlowT
is a cell array with as many elements as levels of the tree. Each cell array element contains the time factors (tObs
) corresponding to its level of the tree and those levels ahead of it.Probs
contains the probability arrays. Each element of the cell array contains the up, middle, and down transition probabilities for each node of the level.Connect
contains a cell array with connectivity information for each node of the tree. The arrangement is similar toProbs
, with the exception that it has only one row in each cell. The number represents the node in the next level to which the middle branch connects to. The top branch connects to the value above (minus one) and the lower branch connects to the value below (plus one).FwdTree
contains the forward spot rate from one node to the next. The forward spot rate is defined as the inverse of the discount factor.RateTree
contains the interest rate from one node to the next.
Data Types: struct
TreeDates
— Tree dates
datetime
Tree dates, returned as a scalar datetime or datetime array.
Data Types: datetime
Model
— Model type
HullWhite
object | BlackKarasinski
object | BlackDermanToy
object
Model type, returned as an object.
Data Types: object
DiscountCurve
— ratecurve
object for creating IRTree
and discounting cash flows
ratecurve
object
This property is read-only.
ratecurve
object for creating the
IRTree
object and discounting cash flows, returned as
a ratecurve
object.
Data Types: object
Object Functions
Examples
Use Hull-White Tree Pricer and Hull-White Model to Price FixedBondOption Instrument
This example shows the workflow to price a FixedBondOption
instrument when you use a HullWhite
model and an IRTree
pricing method.
Create FixedBond
Instrument Object
Use fininstrument
to create a FixedBond
instrument object as the underlying bond.
BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',0.025,'Period', 1,'Name',"fixed_bond_instrument")
BondInst = FixedBond with properties: CouponRate: 0.0250 Period: 1 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 15-Sep-2029 Name: "fixed_bond_instrument"
Create FixedBondOption
Instrument Object
Use fininstrument
to create a FixedBondOption
instrument object.
FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime(2025,9,15),'Strike',98,'Bond',BondInst,'Name',"fixed_bond_option_instrument")
FixedBOption = FixedBondOption with properties: OptionType: "call" ExerciseStyle: "european" ExerciseDate: 15-Sep-2025 Strike: 98 Bond: [1x1 fininstrument.FixedBond] Name: "fixed_bond_option_instrument"
Create ratecurve
Object
Create a ratecurve
object using ratecurve
.
Settle = datetime(2019,9,15); Type = 'zero'; ZeroTimes = [calyears([1:10])]'; ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC = ratecurve with properties: Type: "zero" Compounding: -1 Basis: 0 Dates: [10x1 datetime] Rates: [10x1 double] Settle: 15-Sep-2019 InterpMethod: "linear" ShortExtrapMethod: "next" LongExtrapMethod: "previous"
Create HullWhite
Model Object
Use finmodel
to create a HullWhite
model object.
HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.05)
HullWhiteModel = HullWhite with properties: Alpha: 0.0100 Sigma: 0.0500
Create IRTree
Pricer Object
Use finpricer
to create an IRTree
pricer object and use the ratecurve
object with the 'DiscountCurve'
name-value pair argument.
HWTreePricer = finpricer("irtree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',ZeroDates)
HWTreePricer = HWBKTree with properties: Tree: [1x1 struct] TreeDates: [10x1 datetime] Model: [1x1 finmodel.HullWhite] DiscountCurve: [1x1 ratecurve]
HWTreePricer.Tree
ans = struct with fields:
tObs: [0 1 1.9973 2.9945 3.9918 4.9918 5.9891 6.9863 7.9836 8.9836]
dObs: [15-Sep-2019 15-Sep-2020 15-Sep-2021 15-Sep-2022 15-Sep-2023 15-Sep-2024 15-Sep-2025 15-Sep-2026 15-Sep-2027 15-Sep-2028]
CFlowT: {[10x1 double] [9x1 double] [8x1 double] [7x1 double] [6x1 double] [5x1 double] [4x1 double] [3x1 double] [2x1 double] [9.9809]}
Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double] [3x9 double] [3x11 double] [3x13 double] [3x15 double] [3x17 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6] [2 3 4 5 6 7 8] [2 3 4 5 6 7 8 9 10] [2 3 4 5 6 7 8 9 10 11 12] [2 3 4 5 6 7 8 9 10 11 12 13 14] [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16] [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]}
FwdTree: {1x10 cell}
RateTree: {1x10 cell}
Price FixedBondOption
Instrument
Use price
to compute the price and sensitivities for the FixedBondOption
instrument.
[Price, outPR] = price(HWTreePricer,FixedBOption,["all"])
Price = 11.1739
outPR = priceresult with properties: Results: [1x4 table] PricerData: [1x1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ ______
11.174 -272.19 3667.6 243.09
Use Black-Karasinski Tree Pricer and Black-Karasinski Model to Price FixedBondOption Instrument
This example shows the workflow to price a FixedBondOption
instrument when you use a BlackKarasinski
model and an IRTree
pricing method.
Create FixedBond
Instrument Object
Use fininstrument
to create a FixedBond
instrument object as the underlying bond.
BondInst = fininstrument("FixedBond",'Maturity',datetime(2029,9,15),'CouponRate',0.025,'Period',1,'Name',"fixed_bond_instrument")
BondInst = FixedBond with properties: CouponRate: 0.0250 Period: 1 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 15-Sep-2029 Name: "fixed_bond_instrument"
Create FixedBondOption
Instrument Object
Use fininstrument
to create a FixedBondOption
instrument object.
FixedBOption = fininstrument("FixedBondOption",'ExerciseDate',datetime(2025,9,15),'Strike',100,'Bond',BondInst,'Name',"fixed_bond_option")
FixedBOption = FixedBondOption with properties: OptionType: "call" ExerciseStyle: "european" ExerciseDate: 15-Sep-2025 Strike: 100 Bond: [1x1 fininstrument.FixedBond] Name: "fixed_bond_option"
Create ratecurve
Object
Create a ratecurve
object using ratecurve
.
Settle = datetime(2019,9,15); Type = 'zero'; ZeroTimes = [calyears([1:10])]'; ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC = ratecurve with properties: Type: "zero" Compounding: -1 Basis: 0 Dates: [10x1 datetime] Rates: [10x1 double] Settle: 15-Sep-2019 InterpMethod: "linear" ShortExtrapMethod: "next" LongExtrapMethod: "previous"
Create BlackKarasinski
Model Object
Use finmodel
to create a BlackKarasinski
model object.
BlackKarasinskiModel = finmodel("BlackKarasinski",'Alpha',0.02,'Sigma',0.34)
BlackKarasinskiModel = BlackKarasinski with properties: Alpha: 0.0200 Sigma: 0.3400
Create IRTree
Pricer Object
Use finpricer
to create an IRTree
pricer object and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
BKTreePricer = finpricer("IRTree",'Model',BlackKarasinskiModel,'DiscountCurve',myRC,'TreeDates',ZeroDates)
BKTreePricer = HWBKTree with properties: Tree: [1x1 struct] TreeDates: [10x1 datetime] Model: [1x1 finmodel.BlackKarasinski] DiscountCurve: [1x1 ratecurve]
BKTreePricer.Tree
ans = struct with fields:
tObs: [0 1 1.9973 2.9945 3.9918 4.9918 5.9891 6.9863 7.9836 8.9836]
dObs: [15-Sep-2019 15-Sep-2020 15-Sep-2021 15-Sep-2022 15-Sep-2023 15-Sep-2024 15-Sep-2025 15-Sep-2026 15-Sep-2027 15-Sep-2028]
CFlowT: {[10x1 double] [9x1 double] [8x1 double] [7x1 double] [6x1 double] [5x1 double] [4x1 double] [3x1 double] [2x1 double] [9.9809]}
Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double] [3x9 double] [3x11 double] [3x13 double] [3x15 double] [3x17 double]}
Connect: {[2] [2 3 4] [2 3 4 5 6] [2 3 4 5 6 7 8] [2 3 4 5 6 7 8 9 10] [2 3 4 5 6 7 8 9 10 11 12] [2 3 4 5 6 7 8 9 10 11 12 13 14] [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16] [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]}
FwdTree: {1x10 cell}
RateTree: {1x10 cell}
Price FixedBondOption
Instrument
Use price
to compute the price and sensitivities for the FixedBondOption
instrument.
[Price, outPR] = price(BKTreePricer,FixedBOption,["all"])
Price = 0.5814
outPR = priceresult with properties: Results: [1x4 table] PricerData: [1x1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
_______ _______ ______ _____
0.58143 -15.842 45.702 2.793
Use Hull-White Tree Pricer and Hull-White Model to Price Vanilla FixedBond Instrument
This example shows the workflow to price a vanilla FixedBond
instrument when you use a HullWhite
model and an IRTree
pricing method.
Create FixedBond
Instrument Object
Use fininstrument
to create a FixedBond
instrument object.
Maturity = datetime(2024,1,1); Period = 1; VBond = fininstrument("FixedBond",'Maturity', Maturity,'CouponRate', 0.025,'Period',Period)
VBond = FixedBond with properties: CouponRate: 0.0250 Period: 1 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 01-Jan-2024 Name: ""
Create ratecurve
Object
Create a ratecurve
object using ratecurve
.
Settle = datetime(2018,1,1); ZeroTimes = calyears(1:10)'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; Compounding = 1; ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);
Create HullWhite
Model Object
Use finmodel
to create a HullWhite
model object.
VolCurve = 0.01; AlphaCurve = 0.1; HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);
Create IRTree
Pricer Object
Use finpricer
to create an IRTree
pricer object and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)
HWTreePricer = HWBKTree with properties: Tree: [1x1 struct] TreeDates: [10x1 datetime] Model: [1x1 finmodel.HullWhite] DiscountCurve: [1x1 ratecurve]
Price FixedBond
Instrument
Use price
to compute the price and sensitivities for the vanilla FixedBond
instrument.
[Price, outPR] = price(HWTreePricer, VBond,["all"])
Price = 107.7023
outPR = priceresult with properties: Results: [1x4 table] PricerData: [1x1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
_____ _______ ______ ____
107.7 -602.56 4086.4 0
Use Hull-White Tree Pricer and Hull-White Model to Price Vanilla FloatBond Instrument
This example shows the workflow to price a vanilla FloatBond
instrument when you use a HullWhite
model and an IRTree
pricing method.
Create ratecurve
Object
Create a ratecurve
object using ratecurve
.
Settle = datetime(2018,1,1); ZeroTimes = calyears(1:10)'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; Compounding = 1; ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);
Create FloatBond
Instrument Object
Use fininstrument
to create a vanilla FloatBond
instrument object.
Spread = 0.03; Reset = 1; Maturity = datetime(2024,1,1); Period = 1; Float = fininstrument("FloatBond",'Maturity',Maturity,'Spread',Spread,'Reset',Reset,'ProjectionCurve',ZeroCurve)
Float = FloatBond with properties: Spread: 0.0300 ProjectionCurve: [1x1 ratecurve] ResetOffset: 0 Reset: 1 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" LatestFloatingRate: NaN Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 01-Jan-2024 Name: ""
Create HullWhite
Model Object
Use finmodel
to create a HullWhite
model object.
VolCurve = 0.01; AlphaCurve = 0.1; HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);
Create IRTree
Pricer Object
Use finpricer
to create an IRTree
pricer object and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)
HWTreePricer = HWBKTree with properties: Tree: [1x1 struct] TreeDates: [10x1 datetime] Model: [1x1 finmodel.HullWhite] DiscountCurve: [1x1 ratecurve]
Price FloatBond
Instrument
Use price
to compute the price and sensitivities for the vanilla FloatBond
instrument.
[Price, outPR] = price(HWTreePricer,Float,["all"])
Price = 117.4686
outPR = priceresult with properties: Results: [1x4 table] PricerData: [1x1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ ____
117.47 -60.007 315.09 0
Use BlackDermanToy Tree Pricer and Black-Derman-Toy Model to Price FixedBondOption Instrument
This example shows the workflow to price a FixedBondOption
instrument when you use a BlackDermanToy
model and an IRTree
pricing method.
Create FixedBond
Instrument Object
Use fininstrument
to create a FixedBond
instrument object as the underlying bond.
BondInst = fininstrument("FixedBond",Maturity=datetime(2029,9,15),CouponRate=.024,Principal=100,Basis=1,Period=1,Name="fixed_bond")
BondInst = FixedBond with properties: CouponRate: 0.0240 Period: 1 Basis: 1 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 15-Sep-2029 Name: "fixed_bond"
Create FixedBondOption
Instrument Object
Use fininstrument
to create a FixedBondOption
instrument object.
FixedBOption = fininstrument("FixedBondOption",ExerciseDate=datetime(2025,9,15),Strike=800,Bond=BondInst,OptionType="put",ExerciseStyle="american",Name="fixed_bond_option")
FixedBOption = FixedBondOption with properties: OptionType: "put" ExerciseStyle: "american" ExerciseDate: 15-Sep-2025 Strike: 800 Bond: [1x1 fininstrument.FixedBond] Name: "fixed_bond_option"
Create ratecurve
Object
Create a ratecurve
object using ratecurve
.
Settle = datetime(2019,9,15); Type = 'zero'; ZeroTimes = [calyears(1:10)]'; ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates,Basis=5)
myRC = ratecurve with properties: Type: "zero" Compounding: -1 Basis: 5 Dates: [10x1 datetime] Rates: [10x1 double] Settle: 15-Sep-2019 InterpMethod: "linear" ShortExtrapMethod: "next" LongExtrapMethod: "previous"
Create BlackDermanToy
Model Object
Use finmodel
to create a BlackDermanToy
model object.
BlackDermanToyModel = finmodel("BlackDermanToy",Sigma=0.14)
BlackDermanToyModel = BlackDermanToy with properties: Sigma: 0.1400
Create IRTree
Pricer Object
Use finpricer
to create an IRTree
pricer object and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
BKTreePricer = finpricer("IRTree",Model=BlackDermanToyModel,DiscountCurve=myRC,TreeDates=ZeroDates)
BKTreePricer = BDTTree with properties: Tree: [1x1 struct] TreeDates: [10x1 datetime] Model: [1x1 finmodel.BlackDermanToy] DiscountCurve: [1x1 ratecurve]
BKTreePricer.Tree
ans = struct with fields:
tObs: [0 1 2 3 4 5 6 7 8 9]
dObs: [15-Sep-2019 15-Sep-2020 15-Sep-2021 15-Sep-2022 15-Sep-2023 15-Sep-2024 15-Sep-2025 15-Sep-2026 15-Sep-2027 15-Sep-2028]
FwdTree: {1x10 cell}
RateTree: {1x10 cell}
Price FixedBondOption
Instrument
Use price
to compute the price and sensitivities for the FixedBondOption
instrument.
[Price, outPR] = price(BKTreePricer,FixedBOption,"all")
Price = 705.2729
outPR = priceresult with properties: Results: [1x4 table] PricerData: [1x1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ ______ _______ ___________
705.27 844.75 -8084.8 -2.0464e-08
References
[1] Hull, John, and Alan White. “The General Hull–White Model and Supercalibration.” Financial Analysts Journal, vol. 57, no. 6, Nov. 2001, pp. 34–43.
Version History
Introduced in R2020aR2023a: Support for Option Adjusted Spread
You can use the oas
function to calculate
the option adjusted spread (OAS) when using an IRTree
pricer
object with an HullWhite
, BlackKarasinski
,
or BlackDermanToy
model.
R2022b: Support for Black-Derman-Toy model
The name-value argument option for Model
supports a
"BlackDermanToy"
binomial tree model.
Open Example
You have a modified version of this example. Do you want to open this example with your edits?
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)