MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
  Register to watch video
  • Description
  • Related Resources

Neural Networks – Cornerstones in Machine Learning

From the series: MathWorks Research Summit

Heikki Koivo, Aalto University

The presentation begins with a page from MathWorks e-book “Introducing Machine Learning,” which summarizes various kinds of machine learning algorithms, including supervised learning, of which classification and regression are examples, and unsupervised learning, of which clustering is an example. Several different neural networks and statistical algorithms are listed as part of these three categories of techniques. The first half of the talk gives a brief overview into development of neural network models. The model of a biological neural cell was developed in 1943, followed by modeling biological neural networks, resulting in a multilayer perceptron network, also called a feedforward network. These networks are listed as supervised algorithms having an input, an output, and several hidden layers. Structure and parameters are chosen in advance, except for the weights. The weights are determined based on input-output data using numerical optimization methods to minimize the mean square error.  Current literature has a large number of different neural networks including convolutional neural networks, which are used in deep learning. Key steps for using machine learning in applications are outlined, including: a careful design of experiments; performing experiments to collect a rich-enough dataset; preprocessing data by removing outliers and filtering the data; choosing the neural network, its structure, and training method; and finally, validation of the results using an independent dataset.

The second half of the talk presents industrial applications of neural networks. Variables correlating with web breaks on a paper machine were searched from process measurements using feedforward networks. Online payload estimation of a moving loader in a mine was developed using secondary measurements, feedforward network, and Kalman filter. In mineral-processing froth flotation, enrichment is a crucial process. Late 1990s machine vision was applied to automate the process, including classification of froths. Neural networks were tested successfully, but partial least squares (PLS) gave almost as good results and was chosen because they were simpler to implement. Input to flotation cell is mineral slurry. X-ray fluorescence (XRF) analyzer is commonly used to determine the slurry state and the chemical content in samples taken in many slurry lines. The measurement is accurate but slow, lasting over 10 minutes. Recursive PLS of mineral flotation slurry contents using optical reflectance spectra provided almost continuous (10s) assaying of slurry grades. Data collection of faults in electric machines is not easy, since they last a long time without breaking. To work around this, in a study of fault diagnosis of electric machines, FEM simulation was used to generate different faults. Support vector machines were used to classify power spectrum estimates of different faulty variables. A model bank using dynamical neural network models for different types of faults was also set up for fault classification. Bayesian classifier was applied in decision making.

Related Products

  • MATLAB
  • Control System Toolbox
  • Deep Learning Toolbox
  • Fuzzy Logic Toolbox
  • Image Processing Toolbox
  • Optimization Toolbox
  • Partial Differential Equation Toolbox
  • Simulink
  • Statistics and Machine Learning Toolbox

Learn More

Getting Started with Neural Networks Using MATLAB (4:37)

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

Cyber-physical systems framework developed by NIST aims to support the development of freely composable Internet of Things systems in an integrated development, monitoring, and assessment environment.
14:30
Realizing the Grand Vision of IoT: Normal Forms and...
View full series (17 Videos)

Related Videos:

27:46
Machine Learning with MATLAB
39:11
Predictive Modeling Using Machine Learning - A Mining Case...
43:19
Using Machine Learning to Model Complex Systems
50:23
Predictive Modelling Made Easy with the New Machine...
3:02
Machine Learning with MATLAB Overview

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Contact Sales
  • About MathWorks

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

  • Select a Web Site United States
  • Patents
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2021 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation