Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
19:14 Video length is 19:14.
  • Description
  • Related Resources

A Reinforcement Learning Framework for Smart, Secure, and Efficient Cyber-Physical Autonomy

From the series: MathWorks Research Summit

Kyriakos G. Vamvoudakis, Georgia Institute of Technology

Embedded sensors, computation, and communication have enabled the development of sophisticated control devices for a wide range of cyber-physical applications that include safety monitoring, surveillance, health care, motion planning, search and rescue, traffic monitoring, and power systems. However, the deployment of such devices has been slowed down by concerns regarding their sensitivity to modeling accuracy and their vulnerability to both stochastic failures and malicious attacks. Nowadays the efficiency will be defined by potentials to adapt (complete autonomy) in decentralized, unknown, and complex environments to enable capabilities beyond human limits. Until the achievement of such autonomy, cyber-physical technologies remain a critical issue. Methods from network security and control theory will be combined to design a new paradigm of proactive defense control mechanisms. For such a problem, different modes of operation for the system will be defined to isolate and identify suspicious actuators and sensors. Following the principles of moving target defense, the system’s unpredictability will be maximized, quantified by the information entropy, in order to dynamically and stochastically switch the attack surface while optimally controlling the system. To better understand the behavior of the attackers that act on this system, a framework of bounded reasoning will be introduced to approximate the strategies utilized by attackers of different levels of intelligence. Finally, a novel model-free deep Q-learning control framework will be presented to combine all the aforementioned techniques and converge online in real time to game-theoretic control solutions in the presence of persistent adversaries while guaranteeing closed-loop stability of the equilibrium point.

Related Products

  • MATLAB
  • Simulink

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

Learn about issues in increasing the use and value of data analytics in MEMS as well as methodologies, technologies, and software tools to overcome the challenges in creating MEMS based products.
14:37
New Trends in MEMS Design with Implications for Modeling...
View full series (17 Videos)

Related Videos:

21:21
Model-Based Approach to Resource-Efficient Object Fusion...
2:44
B&R Ensures Efficient Development of Real-Time Code for...
5:28
MATLAB for Portfolio Construction: Smart Beta
28:27
Data Processing Framework Supporting Large Scale Driving...
8:38
MATLAB Unit Testing Framework

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation