Ackermann's Function is a recursive function that is not 'primitive recursive.'
The first argument drives the value extremely fast.
A(m, n) =
- n + 1 if m = 0
- A(m − 1, 1) if m > 0 and n = 0
- A(m − 1,A(m, n − 1)) if m > 0 and n > 0
A(2,4)=A(1,A(2,3)) = ... = 11.
% Range of cases % m=0 n=0:1024 % m=1 n=0:1024 % m=2 n=0:128 % m=3 n=0:6 % m=4 n=0:1
There is some deep recusion.
Input: m,n
Out: Ackerman value
Ackermann(2,4) = 11
Practical application of Ackermann's function is determining compiler recursion performance.
Solution Stats
Problem Comments
2 Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers79
Suggested Problems
-
Return the 3n+1 sequence for n
8487 Solvers
-
365 Solvers
-
Sum of diagonal of a square matrix
1635 Solvers
-
Create a matrix X, where each column is a shifted copy of the vector v
222 Solvers
-
Set some matrix elements to zero
621 Solvers
More from this Author308
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
Solution 15 is, to me, a novel cell array index implementation.
Efficiently to crash my Matlab.