The Fibonacci sequence is defined as:
Fib(1) = 0
Fib(2) = 1
Fib(N) = Fib(N-1) + Fib(N-2)
The Fibonacci sequence can be generalized as follows:
Fib_gen(1) = a
Fib_gen(2) = b
Fib_gen(N) = Fib_gen(N-1) + Fib_gen(N-2)
where 0 <= a <= b
Moreover it can be shown that
Fib_gen(N) = k(1) * Fib(N) + k(2) * Fib(N+1)
Given a and b find k(1) and k(2).
Solution Stats
Problem Comments
1 Comment
Solution Comments
Show comments
Loading...
Problem Recent Solvers50
Suggested Problems
-
Find the alphabetic word product
3457 Solvers
-
243 Solvers
-
569 Solvers
-
575 Solvers
-
Matlab Basics - Set unwanted parts of a vector to zero
259 Solvers
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
It is true that Fib_gen(N) = k(1) * Fib(N) + k(2) * Fib(N+1) for some k, but the problem is actually requesting Fib_gen(N) = k(2) * Fib(N) + k(1) * Fib(N-1) for another k. If one is still in doubt, generate the two sequences and look at the expected answer.