inverse Laplace transform of this function
1 view (last 30 days)
Show older comments
hi
can any body help me to compute inverse laplace transform of this function 1/(s^3+s^2+a) ,in which a is a parameter? I guess that the responce is sin(at)^2 or somthing like that,but when I use MATLAB command ilaplace it gives a long and wierd answre which seems diffrent from the mentiond one?
0 Comments
Answers (1)
Walter Roberson
on 6 Feb 2011
Sorry, the answer isn't even close to sin(a*t)^2. It really is a long weird answer.
syms t
alpha = roots([1 1 0 a]); %3 roots of cubic
tot = 0;
for K = 1 : length(alpha)
tot = tot + exp(alpha(K)*t) / (alpha(K) * (3 * alpha(K) + 2));
end
Or as Maple would write it,
sum(exp(_alpha*t)/_alpha / (3*_alpha+2), _alpha = RootOf(_Z^3+_Z^2+a))
Or if you prefer the explicit solution,
exp(((1/6)*(-8 - 108*a + 12*(12*a+81*a^2)^(1/2))^(1/3) + (2/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - 1/3)*t)/(((1/6)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) + (2/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - 1/3)*((1/2)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) + 2/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) + 1)) +
exp((-(1/12)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (1/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - 1/3+((1/2)*I)*3^(1/2)*((1/6)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (2/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3)))*t)/((-(1/12)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (1/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - 1/3 + ((1/2)*I)*3^(1/2)*((1/6)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (2/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3)))*(-(1/4)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - 1/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) + 1 + ((3/2)*I)*3^(1/2)*((1/6)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (2/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3)))) +
exp((-(1/12)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (1/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - 1/3 - ((1/2)*I)*3^(1/2)*((1/6)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (2/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3)))*t)/((-(1/12)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (1/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - 1/3 - ((1/2)*I)*3^(1/2)*((1/6)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (2/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3)))*(-(1/4)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - 1/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) + 1 - ((3/2)*I)*3^(1/2)*((1/6)*(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3) - (2/3)/(-8 - 108*a + 12*(12*a + 81*a^2)^(1/2))^(1/3))))
0 Comments
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!