Need the backward trajectories of ode plot

3 views (last 30 days)
Atom
Atom on 14 Jul 2013
I have a system of differential equations which I can solve by Euler's method. The following code gives a plot of a trajectory that starts from x(1)=0.7; y(1)=0.11; and depicts its evolution in forwarding time. But I need a trajectory that starts from x(1)=0.7; y(1)=0.11; and evolved in backward time. That mean what will be the plot if t tends to -infinity. Please correct my code so that I can get backword evolution of trajectories:
clear
alpha=.5;gamma=1; delta=0.3; L=.4; beta=1.778;
x(1)=0.7;
y(1)=0.11;
t(1)=0;
for i=1:50000
t(i+1)=t(i)+.01;
x(i+1)=x(i)+.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alpha))];
y(i+1)=y(i)+.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end
plot(x,y, 'b')
axis([.4 1 0 .22])

Answers (1)

Jan
Jan on 14 Jul 2013
Do you ask for changing the line:
t(i+1) = t(i) + 0.01;
to
t(i+1) = t(i) - 0.01;
?
  4 Comments
Jan
Jan on 16 Jul 2013
Edited: Jan on 16 Jul 2013
"for i=50000:1" does not enter the loop at all. You need the stepsize of -1.
I cannot test it currently, but let me guess:
for i = 50000:-1:2
t(i-1) = t(i) - 0.01;
x(i-1) = x(i) + 0.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alp ha))];
y(i-1) = y(i) + 0.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end

Sign in to comment.

Categories

Find more on Develop Apps Using App Designer in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!