solving bvp differential equation

1 view (last 30 days)
Moj
Moj on 13 Jul 2013
I want to solve bvp differential equation. but after a lot of effort I couldn't . my equation is:
(k1*cos(teta)^2+k3*sin(teta)^2)*(d^2(teta)/dz^2)+0.5*(k3-k1)*2*cos(teta)*sin(teta)*(d(teta)/dz)^2+(mu)^-1*kapa*b^2*sin(teta)*cos(teta)=0
NOTE:
1. k1, k3, kapa, mu are constants.
2. teta is a function of z.
3. my boundary condition is : teta(z=0)=0 , teta(z=d)=0 , teta'(z=d/2)=0
  • I don't know to write third bondary condition ( my interval is [0,d]) *I try to solve it with the example of 3 in BVP_tutorial.pdf but I can't ( faced with a lot error)
  • My code is:*
function mat4bvp
w = 2;
L=5*10^-6; % is d
solinit = bvpinit(linspace(0,L,10),@mat4init,w);
sol = bvp4c(@mat4ode,@mat4bc,solinit);
fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)
xint = linspace(0,L);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 L 0 1.6])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% -----------------------------------------------------------------------------
% w is magnetic field (B)
function dydx = mat4ode(x,y,w)
mu = 4*pi*10^-7;
kapa=9.5*10^-7;
k11=5.3*10^-12;
k33=7.3*10^-12;
dydx = [ y(2)
-0.5*(k33-k11)*2*cos(y(x))*sin(y(x))*y(2)-((mu)^-1*kapa*w^2*sin(y(x))*cos(y(x)))];
% ------------------------------------------------------------------------------
function res = mat4bc(ya,yb,w)
res = [ ya(1)
yb(1)];
% ------------------------------------------------------------
function yinit = mat4init(x)
L=5*10^-6;
yinit = [cos((pi/L)*x)];

Answers (0)

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!