R^2 meaning in linear mixed-effects model
11 views (last 30 days)
Show older comments
The linear mixed-effect model class provides the Rsq property (ordinary and adjusted) which captures the proportion of variability in the response explained by the model. Is that the variability explained by fixed effects only or both by fixed and random effects? From the documentation I get the feeling that it's fixed effects only. How would I find the proportion of variability explained by the random effects?
2 Comments
Accepted Answer
More Answers (1)
Rik
on 22 Mar 2021
This is one of the most basic goodness-of-fit parameters. It is so basic even Excel inculdes it when you plot a trendline.
5 Comments
Michael
on 17 Jul 2023
Estimating an R^2 for a linear mixed effects model is non-trivial and is certainly not basic statistics - suitable measures have only relatively recently been developed. In SPSS, the Nakagawa pseudo-R^2 is calculated.
Refs:
Nakagawa, S & Schielzeth, H, 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142.
Johnson, PCD, 2014. Extension of Nakagawa & Schielzeth's R2GLMM to random slopes models. Methods in Ecology and Evolution, 5(9), 944-946.
Nakagawa, S, Johnson, PCD & Schielzeth, H, 2017. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14, 20170213.
See Also
Categories
Find more on Data Preprocessing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!