Implementing an expression in Matlab's Symbolic Math Toolbox
3 views (last 30 days)
Show older comments
Good day,
At the moment I have got equations which look like:
A = ....- q1^2*q1c*q3c + q1*q3*q1c^2 - q1*q3*q2c^2 - q1*q3*q3c^2 + q1*q3*q4c^2 - 2*q1*q4*q1c*q2c - 2*q1*q4*q3c*q4c - q2^2*q1c*q3c + q2^2*q2c*q4c + 2*q2*q3*q1c*q2c + 2*q2*q3*q3c*q4c + q2*q4*q1c^2 - q2*q4*q2c^2 - q2*q4*q3c^2 + q2*q4*q4c^2 + q3^2*q1c*q3c - q3^2*q2c*q4c + q4^2*q1c*q3c - q4^2*q2c*q4c))/((q1*q1c + q2*q2c + q3*q3c + q4*q4c)*(q1^2 + q2^2 + q3^2 + q4^2)*(q1c^2 + q2c^2 + q3c^2 + q4c^2))
Now I know that:
q1c^2+q2c^2+q3c^2+q4c^2 = 1
q1^2+q2^2+q3^2+q4^2 = 1
I like to introduce this information such that I can work with more simplified expressions, because the ones I work with at the moment are very large.
Any ideas how I can achieve this?
2 Comments
Walter Roberson
on 20 May 2013
If q1c^2+q2c^2+q3c^3+q4c^4 = 1 then what would you like (q1^2 + q2^2 + q3^2 + q4^2) to be transformed to?
Will the expression q1c^2+q2c^2+q3c^3+q4c^4 appear specifically as a sub-expression, or do you need to (for example) have MuPAD detect that
5*q3c^4 + 5*q3*q2c^2 + 5*q4c^4*q3c + 5*q3c*q1^2
is
5*q3c*(q1c^2+q2c^2+q3c^3+q4c^4)
and so substitute
5*q3c*1
which is
5*q3c
?
Answers (1)
Walter Roberson
on 20 May 2013
simplify(subs(A, {q4c^2, q4^2}, {1 - (q1c^2+q2c^2+q3c^2), 1 - (q1^2+q2^2+q3^2)}))
0 Comments
See Also
Categories
Find more on Symbolic Math Toolbox in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!