I'm trying to convert Matlab code to C++ or C, but it has some errors. Can someone help me with this?

1 view (last 30 days)
%function [e,w]=lmsBasic(M,x,d);
% Input arguments:
% M = learned filter length, dim 1x1
% x = input signal, dim Nx1
% d = desired signal, dim Nx1
% h = input coefficients (coeff of filter we
% are trying to learn. filter
% that turns d into u)
%
% Output arguments:
% e = estimation error, dim Nx1
% w = final filter coefficients, dim Mx1
mus = [0.01 0.05 0.1 0.5 1 2];% 0.5 1];
for j = 1:length(mus)
for i = 1:100
%%INITIALIZE VALUES%%
% generate input signal
M=128; %buffer size (num filter weights)
%=audioread('Airplane Sound Effect.m4a'); %input signal
x=x/max(x); %sample rate
fs=8000; %number of samples of the input signal
N=length(x); %length of input signal
muOG = mus(j);
% generate known filter coefficients
Pz=(0.5*[0:127]).^2; %linear coefficients
%Pz=randn(128,1); %random coefficients
ylim = max(Pz)*1.20;
ymin = min(Pz)-.2*max(Pz);
% generate filtered input signal == desired signal
d=conv(Pz,x); %input signal filtered by known filter Pz (primary path)
%% LMS FOR MAIN ANC %%
%initalize Wz filter values
Wz=zeros(M,1);
emean=zeros(N,1);
%Make sure that x and d are column vectors
x=x(:);
d=d(:);
%LMS
for n=M:N
xvec=x(n:-1:n-M+1); %input has to be in reverse orxer
%adaptively update mu
mu(n) = muOG;
e(n)=d(n)-Wz'*xvec; %update error
Wz=Wz+mu(n)*xvec*(e(n)); %update filter coefficient
%visualize learned filter in realtime
% plot(Pz)
% hold on
% plot(Wz)
% axis([0 inf ymin ylim])
% title(sprintf('n=%f time=%fs error = %f mu=%f',n-M, (n-M)/fs, e(n), mu(n-M+1)))
% hold off
% legend('Input coefficients','Learned Coefficients')
% drawnow;
end
e=e(:);
emean = (emean(:)+e);
end
emean=(emean)/i;
if sum(isinf(emean))>0
emean(~isinf(emean))=1e3;
eall(j,:)=emean;
elseif max(emean)>1e4
for l = 1:length(emean)
if abs(emean(l)) > 1e3
emean(l)=1e3;
end
end
eall(j,:)=emean;
else
[eall(j,:),q]=(envelope(abs(emean),150,'peaks'));
end
end
figure
for i = 1:length(mus)
plot(10*log10(abs(eall(i,:))))
hold on
end
title('Convergence Time in Cycles')
ylabel('Error (dB)');
xlabel('Cycles');
hleg=legend('0.01','0.05','0.1','0.5','1.0', '2.0');
htitle=get(hleg,'Title');
set(htitle,'String','mu');
pause(17);
soundsc(x,fs);
% %% PLOT RESULTS %%
% figure
% subplot(2,1,1)
% plot(e)
% title('Convergence Time in Cycles')
% ylabel('Amplitude');
% xlabel('Cycles');
% legend('Error');
% subplot(2,1,2)
% stem(Pz)
% hold on
% stem(Wz, 'r*')
% title('Input Coefficients vs Learned Coefficients')
% ylabel('Amplitude');
% xlabel('Numbering of filter tap');
% legend('Input Coefficients', 'learned coefficients')
  5 Comments
Sean Roh
Sean Roh on 28 Feb 2021
I know that MATLAB Coder cannot process graphics or sound, so I'm going to find a way to do that. But can you actually try to convert the code because I have been working on this few days and I can't figure out how to convert it. You can comment out the the audioread part and graphing part.
Sean Roh
Sean Roh on 28 Feb 2021
Edited: Sean Roh on 28 Feb 2021
This is the original code.
%function [e,w]=lmsBasic(M,x,d,h);
%
% Input arguments:
% M = learned filter length, dim 1x1
% x = input signal, dim Nx1
% d = desired signal, dim Nx1
% h = input coefficients (coeff of filter we
% are trying to learn. filter
% that turns d into u)
%
% Output arguments:
% e = estimation error, dim Nx1
% w = final filter coefficients, dim Mx1
mus = [0.01 0.05 0.1 0.5 1 2];% 0.5 1];
for j = 1:length(mus)
for i = 1:100
%%INITIALIZE VALUES%%
% generate input signal
M=128; %buffer size (num filter weights)
x=randn(20000,1); %input signal
x=x/max(x); %sample rate
fs=8000; %number of samples of the input signal
N=length(x); %length of input signal
muOG = mus(j);
% generate known filter coefficients
Pz=(0.5*[0:127]).^2; %linear coefficients
%Pz=randn(128,1); %random coefficients
ylim = max(Pz)*1.20;
ymin = min(Pz)-.2*max(Pz);
% generate filtered input signal == desired signal
d=conv(Pz,x); %input signal filtered by known filter Pz (primary path)
%% LMS FOR MAIN ANC %%
%initalize Wz filter values
Wz=zeros(M,1);
emean=zeros(N,1);
%Make sure that x and d are column vectors
x=x(:);
d=d(:);
%LMS
for n=M:N
xvec=x(n:-1:n-M+1); %input has to be in reverse orxer
%adaptively update mu
mu(n) = muOG;
e(n)=d(n)-Wz'*xvec; %update error
Wz=Wz+mu(n)*xvec*(e(n)); %update filter coefficient
%visualize learned filter in realtime
% plot(Pz)
% hold on
% plot(Wz)
% axis([0 inf ymin ylim])
% title(sprintf('n=%f time=%fs error = %f mu=%f',n-M, (n-M)/fs, e(n), mu(n-M+1)))
% hold off
% legend('Input coefficients','Learned Coefficients')
% drawnow;
end
e=e(:);
emean = (emean(:)+e);
end
emean=(emean)/i;
if sum(isinf(emean))>0
emean(~isinf(emean))=1e3;
eall(j,:)=emean;
elseif max(emean)>1e4
for l = 1:length(emean)
if abs(emean(l)) > 1e3
emean(l)=1e3;
end
end
eall(j,:)=emean;
else
[eall(j,:),q]=(envelope(abs(emean),150,'peaks'));
end
end
figure
for i = 1:length(mus)
plot(10*log10(abs(eall(i,:))))
hold on
end
title('Convergence Time in Cycles')
ylabel('Error (dB)');
xlabel('Cycles');
hleg=legend('0.01','0.05','0.1','0.5','1.0', '2.0');
htitle=get(hleg,'Title');
set(htitle,'String','mu');
% %% PLOT RESULTS %%
% figure
% subplot(2,1,1)
% plot(e)
% title('Convergence Time in Cycles')
% ylabel('Amplitude');
% xlabel('Cycles');
% legend('Error');
% subplot(2,1,2)
% stem(Pz)
% hold on
% stem(Wz, 'r*')
% title('Input Coefficients vs Learned Coefficients')
% ylabel('Amplitude');
% xlabel('Numbering of filter tap');
% legend('Input Coefficients', 'learned coefficients')

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 1 Mar 2021
Edited: Walter Roberson on 1 Mar 2021
My adjusted version of the code passes compilation, and produces graphs. However I can demonstrate that the algorithm is wrong. And besides that, it produces NaN values.
function lmsBasic()
%
% Input arguments:
% M = learned filter length, dim 1x1
% x = input signal, dim Nx1
% d = desired signal, dim Nx1
% h = input coefficients (coeff of filter we
% are trying to learn. filter
% that turns d into u)
%
% Output arguments:
% e = estimation error, dim Nx1
% w = final filter coefficients, dim Mx1
M=128; %buffer size (num filter weights)
mus = [0.01 0.05 0.1 0.5 1 2];% 0.5 1];
fs=8000; %number of samples of the input signal
Nrand = 20000;
Niter = 100;
Nmus = length(mus);
mu = zeros(Nrand,1);
e = zeros(Nrand,1);
eall = zeros(Nmus, Nrand);
for j = 1:Nmus
emeans = zeros(Nrand, 1);
for i = 1:Niter
%%INITIALIZE VALUES%%
% generate input signal
x=randn(Nrand,1); %input signal
x=x/max(x); %sample rate
muOG = mus(j);
% generate known filter coefficients
Pz=(0.5*(0:127)).^2; %linear coefficients
%Pz=randn(128,1); %random coefficients
ylim = max(Pz)*1.20;
ymin = min(Pz)-.2*max(Pz);
% generate filtered input signal == desired signal
d=conv(Pz,x); %input signal filtered by known filter Pz (primary path)
%% LMS FOR MAIN ANC %%
%initalize Wz filter values
Wz=zeros(M,1);
emean=zeros(Nrand,1);
%Make sure that x and d are column vectors
x=x(:);
d=d(:);
%LMS
for n=M:Nrand
xvec=x(n:-1:n-M+1); %input has to be in reverse orxer
%adaptively update mu
mu(n) = muOG;
e(n)=d(n)-Wz'*xvec; %update error
Wz=Wz+mu(n)*xvec*(e(n)); %update filter coefficient
end
e=e(:);
emeans = emean(:)+e;
end
emeans=(emeans)/Niter;
if sum(isinf(emeans))>0
emeans(~isinf(emeans))=1e3;
eall(j,:)=emeans;
elseif max(emeans)>1e4
for l = 1:length(emeans)
if abs(emeans(l)) > 1e3
emeans(l)=1e3;
end
end
eall(j,:)=emeans;
else
[eall(j,:),q]= envelope(abs(emeans),150,'peaks');
end
end
figure
for i = 1:length(mus)
plot(10*log10(abs(eall(i,:))))
hold on
end
title('Convergence Time in Cycles')
ylabel('Error (dB)');
xlabel('Cycles');
%{
hleg=legend('0.01','0.05','0.1','0.5','1.0', '2.0');
htitle=get(hleg,'Title');
set(htitle,'String','mu');
%}
  8 Comments

Sign in to comment.

Categories

Find more on Audio I/O and Waveform Generation in Help Center and File Exchange

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!