Finding the maximum likelihood estimates ?
4 views (last 30 days)
Show older comments
I need to find the MLE estimates. My code is as below. It seems to give me the correct mean but incorrect variance.
function obj = kmlepdf(x,y)
f1 = -1*50*log(2*pi*(y(2)));
f2 = ((y(2)));
f3 = ((x-y(1)).^2);
obj = (f1 + sum(0.5*(f3./f2))); % Normal Function
end
clear all;
load data;
y0 = [0.5 0.5];
lb = [0 0];
ub = [10 10];
% Assign Data to a new variable
x = data;
% Calling the Least Square Minimization
opts=optimset('DerivativeCheck','on','Display','off','TolX',1e-6,'TolFun',1e- 6,'Diagnostics','off','MaxIter',200);
[y, fval] = fmincon(@(y)kmlepdf(x,y),y0,[],[],[],[],lb,ub,[],opts)
0 Comments
Answers (1)
Tom Lane
on 24 Apr 2013
I believe you want
f1 = 0.5*length(x)*log(2*pi*(y(2)));
You start with 1/sqrt(2*pi*sigma^2), then take logs so you get a minus sign, but you need to negate again to get the negative log likelihood that you can minimize.
Also try setting lb(2)=eps.
0 Comments
See Also
Categories
Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!