Maximum Likelihood Estimation for custom distribution
2 views (last 30 days)
Show older comments
Hello,
I have the following problem.
I'm trying to estimate the parameters of a non-standard distribution. I launched dfittool, chose File -> Define Custom Distribution, created file with my own distribution and placed it to Documents/MATLAB/+prob/KouDistribution.m.
When I choose File -> Import Custom Distribution, I cann't find it in the list. I also copied my file to other different folders called '+prob'. But it had no result.
So, where should I place that file?
I have one more question.
I must write method fit for my new distribution, but I don't know, how. I now the probability density function, I know the cumulative density function.
May be, there is another way to estimate needed parameters?
This is a very important problem for me, so I ask someone to help me, who had the same problem, may be, or knows the solution.
Here is the code for distributions object
classdef KouDistribution < prob.ToolboxFittableParametricDistribution
properties(Constant)
DistributionName = 'kou';
end
properties(Dependent = true)
mu
sigma
lambda
p
eta_1
eta_2
end
properties(Constant)
NumParameters = 6;
ParameterNames = {'mu' 'sigma' 'lambda' 'p' 'eta_1' 'eta_2'};
ParameterDescription = {'mu' 'sigma' 'lambda' 'p' 'eta_1' 'eta_2'};
end
properties(GetAccess = 'public', SetAccess = 'protected')
ParameterValues
end
methods
function pd = KouDistribution(mu, sigma, lambda, p, eta_1, eta_2)
pd.ParameterValues = [mu sigma lambda p eta_1 eta_2];
pd.ParameterIsFixed = [true true true true true true];
pd.ParameterCovariance = zeros(pd.NumParameters);
end
function m = meat(this)
m = this.mu;
end
function s = std(this)
s = sqrt(2) * this.sigma;
end
function v = var(this)
v = 2 * this.sigma^2;
end
end
methods
function this = set.mu(this, mu)
this.ParameterValues(1) = mu;
end
function this = set.sigma(this, sigma)
this.ParameterValues(2) = sigma;
end
function this = set.lambda(this, lambda)
this.ParameterValues(3) = lambda;
end
function this = set.p(this, p)
this.ParameterValues(4) = p;
end
function this = set.eta_1(this, eta_1)
this.ParameterValues(5) = eta_1;
end
function this = set.eta_2(this, eta_2)
this.ParameterValues(6) = eta_2;
end
function mu = get.mu(this)
mu = this.ParameterValues(1);
end
function sigma = get.sigma(this)
sigma = this.ParameterValues(2);
end
function lambda = get.lambda(this)
lambda = this.ParameterValues(3);
end
function p = get.p(this)
p = this.ParameterValues(4);
end
function eta_1 = get.eta_1(this)
eta_1 = this.ParameterValues(5);
end
function eta_2 = get.eta_2(this)
eta_2 = this.ParameterValues(6);
end
end
methods(Static)
function pd = fit(x, varargin)
end
function [nll, acov] = likefunc(params, x)
mu = params(1);
sigma = params(2);
lambda = params(3);
p = params(4);
eta_1 = params(5);
eta_2 = params(6);
nll = -sum(log(pdffunc(x, mu, sigma, lambda, p, eta_1, eta_2)));
acov = (sigma^2/n) * eye(2);
end
function y = cdffunc(x, mu, sigma, lambda, p, eta_1, eta_2)
y = 0;
for n = 1 : 10
pi_n = exp(-lambda) * lambda^n / factorial(n);
for k = 1 : n
pp = P(n, k, eta_1, eta_2, p);
qq = Q(n, k, eta_1, eta_2, p);
f1 = exp((sigma * eta_1)^2 / 2) / (sigma * sqrt(2 * pi)) ...
* (sigma * eta_1)^k * I(x - mu, -eta_1, -1 / sigma, -sigma * eta_1, k - 1);
f2 = exp((sigma * eta_2)^2 / 2) / (sigma * sqrt(2 * pi)) ...
* (sigma * eta_2)^k * I(x - mu, eta_2, 1 / sigma, -sigma * eta_2, k - 1);
y = y + pi_n * (pp * f1 + qq * f2);
end
end
y = y + exp(-lambda) * normpdf(-(x - mu) / sigma);
end
function y = pdffunc(x, mu, sigma, lambda, p, eta_1, eta_2)
y = 0;
for n = 1 : 10
pi_n = exp(-lambda) * lambda^n / factorial(n);
for k = 1 : n
pp = P(n, k, eta_1, eta_2, p);
qq = Q(n, k, eta_1, eta_2, p);
h1 = Hh(-x / sigma + sigma * eta_1, k - 1);
h2 = Hh(x / sigma + sigma * eta_2, k - 1);
f1 = (sigma * eta_1)^k * exp((sigma * eta_1)^2 / 2) / (sigma * sqrt(2 * pi))...
* exp(-x * eta_1) .* h1;
f2 = (sigma * eta_2)^k * exp((sigma * eta_2)^2 / 2) / (sigma * sqrt(2 * pi))...
* exp(x * eta_2) .* h2;
y = y + pi_n * (pp * f1 + qq * f2);
end
end
y = y + exp(-lambda) * normcdf(-(x - mu) / sigma);
end
function y = invfunc(p, mu, sigma, lambda, p, eta_1, eta_2)
end
function y = randfunc(mu, sigma, lambda, p, eta_1, eta_2, varargin)
end
end
methods(Static, Hidden)
function info = getInfo
info.Name = 'Kou';
info.code = 'kou';
info.pnames = {'mu', 'sigma', 'lambda', 'p', 'eta_1', 'eta_2'};
info.pdescription = {'mu', 'sigma', 'lambda', 'p', 'eta_1', 'eta_2'};
info.prequired = [0, 0.2, 3, 0.4, 10, 5];
info.hasconfbounds = false;
info.censoring = false;
info.support = [-Inf Inf];
info.closedbound = [false false false false false false];
info.iscontinuous = true;
info.islocscal = true;
info.uselogpp = false;
info.optimopts = false;
info.logci = [false false false false false false];
end
end
end
function f = Hh(x, n) f(1:length(x)) = 0; for i = 1:length(x) f(i) = integral(@(t) (t - x(i)).^n .* exp(-t.^2 / 2), x(i), Inf); end end
function f = P(n, k, eta_1, eta_2, p) q = 1 - p; f = 0; for i = k : n - 1 f = f + nchoosek(n - k - 1, i - k) * nchoosek(n, i) * (eta_1 / (eta_1 + eta_2))^(i - k)... * (eta_2 / (eta_1 + eta_2))^(n - i) * p^i * q^(n - i); end end
function f = Q(n, k, eta_1, eta_2, p) q = 1 - p; f = 0; for i = k : n - 1 f = f + nchoosek(n - k - 1, i - k) * nchoosek(n, i) * (eta_1 / (eta_1 + eta_2))^(n - i)... * (eta_2 / (eta_1 + eta_2))^(i - k) * p^(n - i) * q^(i); end end
function f = I(c, alpha, beta, delta, n) f(1:length(c)) = 0; for i = 1:length(c) f = integral(@(x) exp(alpha * x) .* Hh(beta * x - delta, n), c(i), Inf); end end
0 Comments
Answers (1)
Tom Lane
on 22 Apr 2013
Here are some tricks to help debug this sort of thing:
makedist -reset % will cause MATLAB to revisit your file and re-load
p = makedist('kou',1,2,3...) % to make sure you can create one of these
pdf(p,1:4) % to make sure you can call its pdf method
Here are the things I had to change to get your file to load into dfittool:
1. The invfunc method had two inputs with the same name. Change one of them.
2. The getInfo method needs to start with
info = getInfo@prob.ToolboxFittableParametricDistribution('prob.KouDistribution');
info.name = 'Kou';
(You were missing the first line and had Name rather than name on the second.)
3. Correct the spelling of the islocscale property in this same method.
With these changes I could get dfittool to show your distribution. When I tried to fit it I got an error because your fit method isn't implemented yet.
0 Comments
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!