solution to differential equations system looks strange. What is wrong with my code?

4 views (last 30 days)
I am writing a code to solve the differential equations. I have written the following code but my solution looks wierd. First, I get long digits numbers, which I do not get if I solve the system by hand. secondly, I get constants like C1 and C2 etc... Though I have defined the values of all parameters of functions. Please tell me what is wrong in my code:
%defined parameters
hf12 = exp(-21.6079+0.0099).*exp(-0.0134.*t)
hf13 = 0
hf14 = 0
hf15 = exp(-9.65573+0.01844+0.0821).*exp(0.02246*t)
hf11 = -(hf12+hf15)
hf21 = 0
hf23 = exp(-1.666-0.1116).*exp(-0.0025.*t)
hf24 = exp(-8.96236+0.07691).*exp(0.00978.*t)
hf25 = exp(-9.65573+0.08218).*exp(0.02246.*t)
hf22 = -(hf23+hf24+hf25)
hf31 = 0
hf32 = exp(-21.6079+0.0676+0.0099).*exp(-0.0134.*t)
hf34 = 0
hf35 = exp(-9.65573-(0.11853)+0.08218).*exp(0.02246.*t)
hf33 = -(hf32+hf35)
hf41 = 0
hf42 = exp(-21.609-0.4176+0.0099).*exp(-0.0134.*t)
hf43 = 0
hf45 = exp(-9.65573-0.00415+0.08218).*exp(0.02246.*t)
hf44 = -(hf42+hf45)
%% solution
syms p11(t) p22(t) p33(t) p44(t) p55(t) p12(t) p13(t) p14(t) p15(t) p21(t) p23(t) p24(t) p25(t) ...
p31(t) p32(t) p34(t) p35(t) p41(t) p42(t) p43(t) p45(t) p51(t) p52(t) p53(t) p54(t) p55(t)
ode = [diff(p11,t) == exp(hf12+hf15),...
diff(p22,t) == exp(hf23+hf24+hf25),...
diff(p33,t) == exp(+hf32+hf35),...
diff(p44,t) == exp(+hf42+hf45),...
diff(p12,t) == p11.*hf12+p12*hf22,...
diff(p13,t) == 0,...
diff(p14,t) == 0,...
diff(p15,t) == p11.*hf15+p12*hf25,...
diff(p21,t) == 0,...
diff(p23,t) == p22.*hf23+p23*hf33,...
diff(p24,t) == p22.*hf24+p24*hf44,...
diff(p25,t) == p22.*hf25+p23*hf35+p24.*hf45,...
diff(p31,t) == 0,...
diff(p32,t) == p32.*hf22+p33*hf32,...
diff(p34,t) == 0,...
diff(p35,t) == p32.*hf25+p33*hf35,...
diff(p41,t) == 0,...
diff(p42,t) == p42.*hf22+p44*hf42,...
diff(p43,t) == 0,...
diff(p45,t) == p42.*hf25+p44*hf45,...
diff(p51,t) == 0,...
diff(p52,t) == 0,...
diff(p53,t) == 0,...
diff(p54,t) == 0,...
diff(p55,t) == 1]
cond1 = p11(t)+p12(t)+p13(t)+p14(t)+p15(t) == 1;
cond2 = p21(t)+p22(t)+p23(t)+p24(t)+p25(t) == 1;
cond3 = p31(t)+p32(t)+p33(t)+p34(t)+p35(t) == 1;
cond4 = p41(t)+p42(t)+p43(t)+p44(t)+p45(t) == 1;
cond5 = p51(t)+p52(t)+p53(t)+p54(t)+p55(t) == 1;
S = dsolve(ode)
These equations are solutions to probabilities therefore, I am expecting the answers between 0 and 1.

Accepted Answer

Walter Roberson
Walter Roberson on 29 Jan 2021
Edited: Walter Roberson on 29 Jan 2021
Q = @(v) sym(v)
Q = function_handle with value:
@(v)sym(v)
syms t real
%defined parameters
hf12 = exp(Q(-21.6079)+Q(0.0099)).*exp(Q(-0.0134).*t)
hf12 = 
hf13 = 0
hf13 = 0
hf14 = 0
hf14 = 0
hf15 = exp(Q(-9.65573)+Q(0.01844)+Q(0.0821)).*exp(Q(0.02246)*t)
hf15 = 
hf11 = -(hf12+hf15)
hf11 = 
hf21 = 0
hf21 = 0
hf23 = exp(Q(-1.666)-Q(0.1116)).*exp(Q(-0.0025).*t)
hf23 = 
hf24 = exp(Q(-8.96236)+Q(0.07691)).*exp(Q(0.00978).*t)
hf24 = 
hf25 = exp(Q(-9.65573)+Q(0.08218)).*exp(Q(0.02246).*t)
hf25 = 
hf22 = -(hf23+hf24+hf25)
hf22 = 
hf31 = 0
hf31 = 0
hf32 = exp(Q(-21.6079)+Q(0.0676)+Q(0.0099)).*exp(Q(-0.0134).*t)
hf32 = 
hf34 = 0
hf34 = 0
hf35 = exp(Q(-9.65573)-Q(0.11853)+Q(0.08218)).*exp(Q(0.02246).*t)
hf35 = 
hf33 = -(hf32+hf35)
hf33 = 
hf41 = 0
hf41 = 0
hf42 = exp(Q(-21.609)-Q(0.4176)+Q(0.0099)).*exp(Q(-0.0134).*t)
hf42 = 
hf43 = 0
hf43 = 0
hf45 = exp(Q(-9.65573)-Q(0.00415)+Q(0.08218)).*exp(Q(0.02246).*t)
hf45 = 
hf44 = -(hf42+hf45)
hf44 = 
%% solution
syms p11(t) p22(t) p33(t) p44(t) p55(t) p12(t) p13(t) p14(t) p15(t) p21(t) p23(t) p24(t) p25(t) ...
p31(t) p32(t) p34(t) p35(t) p41(t) p42(t) p43(t) p45(t) p51(t) p52(t) p53(t) p54(t) p55(t)
ode = [diff(p11,t) == exp(hf12+hf15),...
diff(p22,t) == exp(hf23+hf24+hf25),...
diff(p33,t) == exp(+hf32+hf35),...
diff(p44,t) == exp(+hf42+hf45),...
diff(p12,t) == p11.*hf12+p12*hf22,...
diff(p13,t) == 0,...
diff(p14,t) == 0,...
diff(p15,t) == p11.*hf15+p12*hf25,...
diff(p21,t) == 0,...
diff(p23,t) == p22.*hf23+p23*hf33,...
diff(p24,t) == p22.*hf24+p24*hf44,...
diff(p25,t) == p22.*hf25+p23*hf35+p24.*hf45,...
diff(p31,t) == 0,...
diff(p32,t) == p32.*hf22+p33*hf32,...
diff(p34,t) == 0,...
diff(p35,t) == p32.*hf25+p33*hf35,...
diff(p41,t) == 0,...
diff(p42,t) == p42.*hf22+p44*hf42,...
diff(p43,t) == 0,...
diff(p45,t) == p42.*hf25+p44*hf45,...
diff(p51,t) == 0,...
diff(p52,t) == 0,...
diff(p53,t) == 0,...
diff(p54,t) == 0,...
diff(p55,t) == 1].';
ode = ode(t);
cond1 = p11(t)+p12(t)+p13(t)+p14(t)+p15(t) == 1;
cond2 = p21(t)+p22(t)+p23(t)+p24(t)+p25(t) == 1;
cond3 = p31(t)+p32(t)+p33(t)+p34(t)+p35(t) == 1;
cond4 = p41(t)+p42(t)+p43(t)+p44(t)+p45(t) == 1;
cond5 = p51(t)+p52(t)+p53(t)+p54(t)+p55(t) == 1;
S = dsolve(ode)
S = struct with fields:
p11: [1×1 sym] p12: [1×1 sym] p13: [1×1 sym] p14: [1×1 sym] p15: [1×1 sym] p21: [1×1 sym] p22: [1×1 sym] p23: [1×1 sym] p24: [1×1 sym] p25: [1×1 sym] p31: [1×1 sym] p32: [1×1 sym] p33: [1×1 sym] p34: [1×1 sym] p35: [1×1 sym] p41: [1×1 sym] p42: [1×1 sym] p43: [1×1 sym] p44: [1×1 sym] p45: [1×1 sym] p51: [1×1 sym] p52: [1×1 sym] p53: [1×1 sym] p54: [1×1 sym] p55: [1×1 sym]
S.p11
ans = 
vpa(S.p11, 5)
ans = 
Sc = struct2cell(S);
Sv = simplify(vertcat(Sc{:}), 'steps', 10)
Sv = 
symvar(Sv)
ans = 
conds = [cond1; cond2; cond3; cond4; cond5]
conds = 
temp = subs(conds, S);
%do not simplify() the equations directly, as it will test to see
%whether the left side equals the right side and will say "symfalse"
conds_subs = simplify(lhs(temp)-rhs(temp), 'steps', 10)
conds_subs = 
symvar(conds_subs)
ans = 
  5 Comments
Walter Roberson
Walter Roberson on 30 Jan 2021
Your first four p5* have derivative 0 so they must be constant. Your p55 derivative is 1, so the function must be 1*t plus a constant. The five together total 1. But the five added are a series of constants plus t. That cannot be constant unless t is restricted to 0. Therefore your equations are wrong.
Walter Roberson
Walter Roberson on 30 Jan 2021
Notice that you have exp() of terms that are already exp(). See sigma 19 in the above "where" list to see it come in as a factor. You can be fairly sure that you will not be able to find a closed form solution for integrals or ode that include such terms.

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!