Error: Invalid network layer does not support sequence input
1 view (last 30 days)
Show older comments
ZEMIN HUANG
on 26 Jan 2021
Commented: ZEMIN HUANG
on 31 Jan 2021
hi, i am building a CNN training model. however, i got this error that do not know how to solve. i tried to insert a sequence folding layer then i got error again saying that "unconnected input and output". please help me with this
% Load training data and essential parameters
load('trainData.mat','XTrain','YTrain');
numSC = 64;
% Batch size
miniBatchSize = 4000;
% Iteration
maxEpochs = 10;
% Sturcture
inputSize = [6,64,1];
numHiddenUnits = 128;
numHiddenUnits2 = 64;
numHiddenUnits3 = numSC;
numClasses = 16;
% DNN Layers
layers = [ ...
sequenceInputLayer(inputSize,'Name','sequence')
convolution2dLayer(3,32,'Name','conv2')
reluLayer('Name','relu')
maxPooling2dLayer(2,'Name','maxpool')
flattenLayer('Name','flat')
lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
fullyConnectedLayer(numClasses,'Name','fc')
softmaxLayer('Name','sm')
classificationLayer('Name','class')];
% Training options
options = trainingOptions('adam',...
'InitialLearnRate',0.01,...
'ExecutionEnvironment','auto', ...
'GradientThreshold',1, ...
'LearnRateDropFactor',0.1,...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'Shuffle','every-epoch', ...
'Verbose',1,...
'Plots','training-progress');
% Train the neural network
tic;
net = trainNetwork(XTrain,YTrain,layers,options);
toc;
save('NN.mat','net');
0 Comments
Accepted Answer
Mahesh Taparia
on 29 Jan 2021
Hi
There is a requirement of sequenceFoldingLayer and sequenceUnfoldingLayer in the layer graph. For a sample layergraph, you can refer here. You can consider the below code for your case:
% DNN Layers
layers = [ ...
sequenceInputLayer(inputSize,'Name','sequence')
sequenceFoldingLayer('Name','fold')
convolution2dLayer(3,32,'Name','conv2')
reluLayer('Name','relu')
maxPooling2dLayer(2,'Name','maxpool')
sequenceUnfoldingLayer('Name','unfold')
flattenLayer('Name','flat')
lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
fullyConnectedLayer(numClasses,'Name','fc')
softmaxLayer('Name','sm')
classificationLayer('Name','class')];
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');
analyzeNetwork(lgraph)
Hope it will help!
More Answers (0)
See Also
Categories
Find more on Parallel and Cloud in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!