Two linear equation with absolute value equation
1 view (last 30 days)
Show older comments
Murat YAPICI
on 13 Jan 2021
Commented: Murat YAPICI
on 13 Jan 2021
Hello,
I have two linear equation and one absolute value equation. Is there a easy way to obtain minimum norm solution ?
0 Comments
Accepted Answer
Bruno Luong
on 13 Jan 2021
Edited: Bruno Luong
on 13 Jan 2021
Correct minimum norm solution is
xmin =
90.0000
-40.0000
5.0000
5.0000
normxmin =
98.7421
obtained with this code
s = cell(1,4);
[s{:}] = ndgrid([-1 1]);
s = reshape(cat(5,s{:}),[],4);
fmin = Inf;
xmin = nan(4,1);
for k=1:size(s,1)
sk = s(k,:);
Aeq = [1 1 -1 -1;
1 1 1 1;
sk.*[1 1 -1 -1]];
beq = [40; 60; 120];
A = -diag(sk);
b = zeros(4,1);
[x,f,flag] = quadprog(eye(4), zeros(4,1), ...
A, b, ...
Aeq, beq, ...
[], []);
if flag > 0 && f < fmin
fmin = f;
xmin = x;
end
end
xmin
normxmin = norm(xmin,2)
% Check the constraints
xmin(1)+xmin(2)-xmin(3)-xmin(4)
xmin(1)+xmin(2)+xmin(3)+xmin(4)
abs(xmin(1))+abs(xmin(2))-abs(xmin(3))-abs(xmin(4))
More Answers (1)
Alan Stevens
on 13 Jan 2021
Do you mean something like this
X0 = [-50 -5];
[X, Fval] = fminsearch(@(X) fn(X),X0);
x2 = X(1); x1 = 50-x2;
x4 = X(2); x3 = 10-x4;
disp([x1 x2 x3 x4])
disp(x1+x2+x3+x4)
disp(x1+x2-x3-x4)
disp(abs(x1)+abs(x2)-abs(x3)-abs(x4))
function F = fn(X)
x2 = X(1); x1 = 50-x2;
x4 = X(2); x3 = 10-x4;
F = norm(abs(x1)+abs(x2)-abs(x3)-abs(x4)-120);
end
See Also
Categories
Find more on Systems of Nonlinear Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!