MATLAB equivalent functions in Keras

4 views (last 30 days)
Ruhi Thomas
Ruhi Thomas on 2 Jan 2021
Answered: Aneela on 9 Sep 2024
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits1)
lstmLayer(numHiddenUnits2)
fullyConnectedLayer(numResponses)
regressionLayer
];
What would be these layers be in Keras?
  1 Comment
Ruhi Thomas
Ruhi Thomas on 2 Jan 2021
i know lstmLayer is tf.keras.layers.LSTM
What about the others?

Sign in to comment.

Answers (1)

Aneela
Aneela on 9 Sep 2024
Hi Ruhi Thomas,
If tf.keras is the way you imported Keras from TensorFlow, the above layers are equivalent to the following layers in Keras:
sequenceInputLayer(inputSize)
inputLayer= tf.keras.layers.Input(shape=(None, inputSize))
lstmLayer(numHiddenUnits1) –
lstm_layer1=tf.keras.layers.LSTM(numHiddenUnits1, return_sequences=True)(inputLayer)
lstmLayer(numHiddenUnits2) –
lstm_layer2=tf.keras.layers.LSTM(numHiddenUnits2, return_sequences=True)(inputLayer)
fullyConnectedLayer(numResponses)
dense_layer = tf.keras.Layers.Dense(numResponses)(lstm_layer2)
regressionLayer
  • In keras, there is no separate need for regression layer, instead we specify the loss function as part of the model compilation.
  • For a regression task, loss functions like “mean_squared_error,mean_absolute_error” are typically used.
model = Model(inputs=input_layer, outputs=dense_layer)
model.compile(optimizer='adam', loss='mean_squared_error')
Hope this helps!!

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!