MATLAB equivalent functions in Keras
    5 views (last 30 days)
  
       Show older comments
    
layers = [ ... 
sequenceInputLayer(inputSize) 
lstmLayer(numHiddenUnits1) 
lstmLayer(numHiddenUnits2) 
fullyConnectedLayer(numResponses) 
regressionLayer
];
What would be these layers be in Keras?
Answers (1)
  Aneela
      
 on 9 Sep 2024
        Hi Ruhi Thomas, 
If “tf.keras” is the way you imported Keras from TensorFlow, the above layers are equivalent to the following layers in Keras: 
sequenceInputLayer(inputSize) –              
 inputLayer= tf.keras.layers.Input(shape=(None, inputSize)) 
lstmLayer(numHiddenUnits1) –  
 lstm_layer1=tf.keras.layers.LSTM(numHiddenUnits1, return_sequences=True)(inputLayer) 
lstmLayer(numHiddenUnits2) –  
 lstm_layer2=tf.keras.layers.LSTM(numHiddenUnits2, return_sequences=True)(inputLayer) 
fullyConnectedLayer(numResponses) –  
 dense_layer = tf.keras.Layers.Dense(numResponses)(lstm_layer2) 
regressionLayer –  
- In keras, there is no separate need for regression layer, instead we specify the loss function as part of the model compilation.
- For a regression task, loss functions like “mean_squared_error”, “mean_absolute_error” are typically used.
 model = Model(inputs=input_layer, outputs=dense_layer) 
 model.compile(optimizer='adam', loss='mean_squared_error') 
Hope this helps!!
0 Comments
See Also
Categories
				Find more on Deep Learning Toolbox in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
