Evaluation-Interpolation using FFT algorithm

2 views (last 30 days)
I'm trying to develop a FFT algorithm for evaluation-interpolation of polynomials.
I tried the simple function where the coefficients are expressed as but only the DFT seems to work. I've spent quite some time on this and I can't make it work. Any suggestions?
f = @(x) x^3;
Pf = [1 , 0 , 0 , 0];
yf = FFT(Pf,1);
y = FFT(yf,2)
function y = FFT(P,k)
% k = 1 -> DFT
% k = 2 -> IDFT
N = length(P);
omega = exp(2*pi*1i/N);
if k == 1
l = 1;
p = 1;
elseif k == 2
l = 1/N;
p = -1;
end
if N == 1
y = P;
else
n = N/2;
P_e = P(2:2:end);
P_o = P(1:2:end);
y_e = FFT(P_e,k);
y_o = FFT(P_o,k);
y = zeros(N,1);
for j = 1 : N/2
y(j) = y_e(j) + (l*omega^(p*(j-1)))*y_o(j);
y(j+n) = y_e(j) - (l*omega^(p*(j-1)))*y_o(j);
end
end
end
  1 Comment
chicken vector
chicken vector on 22 Dec 2020
Edited: chicken vector on 22 Dec 2020
For anyone having the same problem, below there's the fixed code for IFFT. I'm having some issues on dividing by N inside the recursive function, so it is done outside.
P = [%vector of the evaluations];
N = length(P);
y = IFFT(P)/N;
function y = IFFT(P)
% This works only if N = 2^k
N = length(P);
n = N/2;
omega = exp(-2*pi*1i/N);
if N == 1
y = P;
else
P_e = P(1:2:end);
P_o = P(2:2:end);
y_e = IFFT(P_e);
y_o = IFFT(P_o);
y = zeros(N,1);
for j = 1 : n
y(j) = y_e(j) + omega^(j-1)*y_o(j);
y(j+n) = y_e(j) - omega^(j-1)*y_o(j);
end
end
end

Sign in to comment.

Answers (1)

Matt J
Matt J on 22 Dec 2020
A highly impractical thing to do. If you know the coefficients of the polynomial, you should just use polyval().
However, if you must use FFT interpolation, then interpft() will readily do it,
  3 Comments
Matt J
Matt J on 22 Dec 2020
Finding the roots of a 15th order polynomial can be highly unstable numerically, e.g.,
rTrue=sort((rand(1,15))*5);
coeffsTrue=poly(rTrue), %true coefficients
coeffsTrue = 1×16
0.0000 -0.0000 0.0005 -0.0048 0.0297 -0.1319 0.4312 -1.0507 1.9172 -2.6054 2.5973 -1.8477 0.8961 -0.2745 0.0461 -0.0030
coeffs=coeffsTrue+[0,randn(1,15)]*1e-6*max(coeffsTrue), %add small errors to coefficients
coeffs = 1×16
0.0000 -0.0000 0.0005 -0.0048 0.0297 -0.1319 0.4312 -1.0507 1.9172 -2.6054 2.5973 -1.8477 0.8961 -0.2745 0.0461 -0.0030
rTrue, %true roots
rTrue = 1×15
0.1598 0.4384 0.6582 1.3390 1.5456 1.7830 2.1863 2.2286 2.2790 2.6051 2.9448 3.0386 3.6676 4.1255 4.5711
r=sort(real( roots(coeffs) )).' %calculated roots
r = 1×15
0.1596 0.4403 0.6541 1.0277 1.0277 1.1391 1.1391 1.2642 1.2642 1.4859 1.4859 2.3075 2.3075 8.5793 8.5793
chicken vector
chicken vector on 22 Dec 2020
I used 'roots' aswell and appears to have very good performances until now.
Thank you Matt for your help.

Sign in to comment.

Categories

Find more on Polynomials in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!